Full Text:   <1138>

CLC number: TU393.99

On-line Access: 

Received: 2002-07-15

Revision Accepted: 2002-10-20

Crosschecked: 0000-00-00

Cited: 1

Clicked: 3106

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Bio-Design and Manufacturing  2021 Vol.4 No.3 P.317~323

10.1631/jzus.2003.0317


Geometrical nonlinear stability analyses of cable-truss domes


Author(s):  GAO Bo-qing, LU Qun-xin, DONG Shi-lin

Affiliation(s):  Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   bqgao@zjuem.zju.edu.cn

Key Words:  Cable-truss dome, Geometrical nonlinear stability analysis, Parameter analysis, Cable distribution, Critical load


Share this article to: More

GAO Bo-qing, LU Qun-xin, DONG Shi-lin. Geometrical nonlinear stability analyses of cable-truss domes[J]. Journal of Zhejiang University Science D, 2021, 4(3): 317~323.

@article{title="Geometrical nonlinear stability analyses of cable-truss domes",
author="GAO Bo-qing, LU Qun-xin, DONG Shi-lin",
journal="Journal of Zhejiang University Science D",
volume="4",
number="3",
pages="317~323",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2003.0317"
}

%0 Journal Article
%T Geometrical nonlinear stability analyses of cable-truss domes
%A GAO Bo-qing
%A LU Qun-xin
%A DONG Shi-lin
%J Journal of Zhejiang University SCIENCE D
%V 4
%N 3
%P 317~323
%@ 1869-1951
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2003.0317

TY - JOUR
T1 - Geometrical nonlinear stability analyses of cable-truss domes
A1 - GAO Bo-qing
A1 - LU Qun-xin
A1 - DONG Shi-lin
J0 - Journal of Zhejiang University Science D
VL - 4
IS - 3
SP - 317
EP - 323
%@ 1869-1951
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2003.0317


Abstract: 
The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cable-truss domes with different cable distributions. The results indicate that the critical load increases evidently when cables, especially diagonal cables, are distributed in the structure. The critical loads of the structure at different rise-span ratios are also discussed in this paper. It was shown that the effect of the tensional cable is more evident at small rise-span ratio. The buckling of the structure is characterized by a global collapse at small rise-span ratio; that the torsional buckling of the radial truss occurs at big rise-span ratio; and that at proper rise-span ratio, the global collapse and the lateral buckling of the truss occur nearly simultaneously.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdel-Ghaffar, A.M. and Khalifa, M.A.,1991. Importance of cable vibration in dynamics of cable-stayed bridges. Journal of Engineering Mechanics, ASCE, 117: 2571-2589.

[2]Aufaure, M., 2000. A three-node cable element ensuring the continuity of the horizontal tension: a clamp cable element. Computers & Structure, 74: 243-251.

[3]Cao, Z. and Ketter, R.L., 1991. Seismic modeling of Truss Stiffened Cable System. International Journal of Space Structure, 6(1): 18-25.

[4]Chen, W.J. and Dong, S.L., 2001. Generalized incremental algorithm for nonlinear structural analysis. Engineering Mechanics, 18(3): 28-33(in Chinese).

[5]Chen, W.J., Fu, G.Y., Gong, J.H. and Dong, S.L., 2002.Instability behavior of partial double-layer lattice-ribbed domes. Spatial structure, 8(1):19-28(in Chinese).

[6]Hangai, Y., 1981. Application of the generalized inverse to the geometrically nonlinear problem. Solid Mechanics(SM)Archives, 6(1): 129-165.

[7]Hangai,Y. and Kawaguchi,K.,1990.Analysis for shape-finding process of unstable structures. Bulletin of IASS, 30(100): 111-128

[8]Karoumi, R., 1996. Dynamic response of cable-stayed bridges to moving vehicles. IABSE 15th Congress, Denmark, p.87-92.

[9]Karoumi, K., 1999. Some modeling aspects in the nolinear finite element analysis of cable supported bridges. Computers & Structures, 71(1): 397-412.

[10]Leonard, J.W., 1988. Tension Structure. McGraw-Hill, New York.

[11]Liu,Y. and Motro,R., 1995. Shape analysis and internal forces in unstable structures. Proc. IASS Int. Symposium,2:819-826.

[12]Song, T.X., 1996. Finite element analysis of nonlinear structures. Press of Huazhong University of science and technology, Wuhan(in Chinese).

[13]Walther, R., Houriet, B.,Isler, W. and Moia P., 1988. Cable Stayed Bridges. Thomas Telford, London.

[14]Wang, S.T. and Jiang, Z.R., 1999. The static analysis and study of dynamic characteristics of the cable-truss structure. Journal of Building structure, 20(3): 2-7(in Chinese).

[15]Xie, Y.Z. and Chen, Q.Z., 1989. Design and construction of the cable-truss. Composite structure of Anhui gymnasium, 10(6): 71-79(in Chinese).

[16]Zhang, L.X. and Shen, Z.Y., 2000. Numerical models for cable element in prestressed cable structures. Spatial structure, 6(2): 18-23(in Chinese).

[17]Zhang, Z.H. and Dong, S.L., 2001. Slippage analysis of continuous cable in tension structures. Spatial structure, 7(3): 26-32(in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE