CLC number: O343.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 6
Clicked: 5420
CHEN Jiang-ying, DING Hao-jiang, HOU Peng-fei. Analytical solutions of simply supported magnetoelectroelastic circular plate under uniform loads[J]. Journal of Zhejiang University Science A, 2003, 4(5): 560-564.
@article{title="Analytical solutions of simply supported magnetoelectroelastic circular plate under uniform loads",
author="CHEN Jiang-ying, DING Hao-jiang, HOU Peng-fei",
journal="Journal of Zhejiang University Science A",
volume="4",
number="5",
pages="560-564",
year="2003",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2003.0560"
}
%0 Journal Article
%T Analytical solutions of simply supported magnetoelectroelastic circular plate under uniform loads
%A CHEN Jiang-ying
%A DING Hao-jiang
%A HOU Peng-fei
%J Journal of Zhejiang University SCIENCE A
%V 4
%N 5
%P 560-564
%@ 1869-1951
%D 2003
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2003.0560
TY - JOUR
T1 - Analytical solutions of simply supported magnetoelectroelastic circular plate under uniform loads
A1 - CHEN Jiang-ying
A1 - DING Hao-jiang
A1 - HOU Peng-fei
J0 - Journal of Zhejiang University Science A
VL - 4
IS - 5
SP - 560
EP - 564
%@ 1869-1951
Y1 - 2003
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2003.0560
Abstract: In this paper, the axisymmetric general solutions of transversely isotropic magnetoelectroelastic media are expressed with four harmonic displacement functions at first. Then, based on the solutions, the analytical three-dimensional solutions are provided for a simply supported magnetoelectroelastic circular plate subjected to uniform loads. Finally, the example of circular plate is presented.
[1]Ding, H. J., Chen, B. and Liang, J., 1996. General solutions for coupled equations for piezoelectric media. Int. J. Solids Struct., 33: 2283-2298.
[2]Ding, H. J., Guo, F. L. and Huo, P. F., 2000. On the equilibrium of piezoelectric bodies of revolution. Int. J. Solids Struct., 37: 1293-1326.
[3]Ding, H. J. and Chen, W. Q., 2001.Three Dimensional Problems of Piezoelasticity. Nova Science Publishers, New York.
[4]Li, J. Y., 2000. Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials. Int J. Eng. Sci., 38: 1993-2011.
[5]Pan, E., 2000. Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. App. Mech., 68: 607-618.
[6]Timoshenko, S. P. and Goodier, J. N., 1970. Theory of Elasticity(3rd ed). McGraw Hill, New York.
Open peer comments: Debate/Discuss/Question/Opinion
<1>