Full Text:   <1117>

CLC number: TP391

On-line Access: 

Received: 2002-09-15

Revision Accepted: 2002-12-10

Crosschecked: 0000-00-00

Cited: 1

Clicked: 2774

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Bio-Design and Manufacturing  2021 Vol.4 No.6 P.623~629

10.1631/jzus.2003.0623


GFFD: Generalized free-form deformation with scalar fields


Author(s):  QIN Xu-jia, HUA Wei, FANG Xiang, BAO Hu-jun, PENG Qun-sheng

Affiliation(s):  State Key Lab. of CAD & CG, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   qinxj@cad.zju.edu.cn, bao@cad.zju.edu.cn, peng@cad.zju.edu.cn

Key Words:  FFD, Computer aided geometric design (CAGD), Computer aided design (CAD), Scalar field


Share this article to: More

QIN Xu-jia, HUA Wei, FANG Xiang, BAO Hu-jun, PENG Qun-sheng. GFFD: Generalized free-form deformation with scalar fields[J]. Journal of Zhejiang University Science D, 2021, 4(6): 623~629.

@article{title="GFFD: Generalized free-form deformation with scalar fields",
author="QIN Xu-jia, HUA Wei, FANG Xiang, BAO Hu-jun, PENG Qun-sheng",
journal="Journal of Zhejiang University Science D",
volume="4",
number="6",
pages="623~629",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2003.0623"
}

%0 Journal Article
%T GFFD: Generalized free-form deformation with scalar fields
%A QIN Xu-jia
%A HUA Wei
%A FANG Xiang
%A BAO Hu-jun
%A PENG Qun-sheng
%J Journal of Zhejiang University SCIENCE D
%V 4
%N 6
%P 623~629
%@ 1869-1951
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2003.0623

TY - JOUR
T1 - GFFD: Generalized free-form deformation with scalar fields
A1 - QIN Xu-jia
A1 - HUA Wei
A1 - FANG Xiang
A1 - BAO Hu-jun
A1 - PENG Qun-sheng
J0 - Journal of Zhejiang University Science D
VL - 4
IS - 6
SP - 623
EP - 629
%@ 1869-1951
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2003.0623


Abstract: 
The novel free-form deformation (FFD) technique presented in the paper uses scalar fields defined by skeletons with arbitrary topology. The technique embeds objects into the scalar field by assigning a field value to each point of the objects. When the space of the skeleton is changed, the distribution of the scalar field changes accordingly, which implicitly defines a deformation of the space. The generality of skeletons assures that the technique can freely define deformable regions to produce a broader range of shape deformations.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Barr, A., 1984.Global and local deformations of solid primitives.Proceedings of SIGGRAPH'84, Computer Graphics, 18(3):21-30.

[2]Blinn,J.,1982.A generalization of algebraic surface drawing.ACM Trans.Graphics, 1(3):135-256.

[3]Borrel,P.and Bechmann,D.,1991.Deformation of N-dimensional objects.International Journal of Computational Geometry & Applications, 1:427-453.

[4]Cohen-Or,D., Levin,D.and Solomovici,A., 1998.Three-dimensional distance field metamorphosis.ACM Transactions on Graphics, 17(2):116-141.

[5]Coquillart,S.,1991.Extend free-form deformation: A sculpturing tool for 3D geometric models.Proceedings of SIGGRAPH'91,Computer Graphics, 25(4):21-26.

[6]Eck,M., Derose,T., Duchamp,T., Hoppe,H., Lounsbery, M.and Stuetzle, W., 1995.Multiresolution Analysis of Arbitrary Meshes.Proceedings SIGGRAPH '95, ACM Press, New York, p.173-182.

[7]Fang,X., Bao,H., Heng,P.A., Wang,T.T.and Peng,Q.S., 2001.Continuous field-based free-form surface modeling and morphing.Computers & Graphics, 25(2): 235-243.

[8]Griessmair, J.and Purgathofer, W., 1989.Deformation of Solids with Trivariate B-Splines.Eurographics'89, North-Holland, p.137-148.

[9]Hoppe, H.,1996.Progressive Meshes.Proceedings of SIGGRAPH'96, Annual Conference Series, ACM Press, New York, p.99-108.

[10]Hsu,W., Hughes,J.and Kaufmann,H.,1992.Direct manipulation of free-form deformations.Computer Graphics, 26:177-184.

[11]Kobbelt,L., Campagna,S., Vorsatz,J.and Seidel, H.P., 1998.Interactive Multi-Resolution Modeling on Arbitrary Meshes.Proceedings of SIGGRAPH'98, ACM Press, New York,p.105-114.

[12]Lamousin,H.J.and Waggenspack,W.N.,1994.NURBS-based free-form deformation.IEEE Computer Graphics and Applications, 14(6):59-65.

[13]Lazarus, F., Coquillart,S.and Jancene,P., 1994.Axial deformations: an intuitive deformation technique.Computer-Aided Design, 26(8):607-613.

[14]Lee,A., Sweldens,W., Schröder, P., Cowsar,L.and Dodkin, D., 1998.MAPS: Multiresolution Adaptive Parameterization of Surfaces.Proceedings of SIGGRAPH'98, ACM Press, New York,p.95-104.

[15]MacCracken,R.and Joy,K.I., 1996.Free-Form Deformation with Lattices of Arbitrary Topology.Proceedings of SIGGRAPH'96, ACM Press, New York, p.181-188.

[16]Nishimura,H., Hirai,M., Kawai,T., Kawata, T., Shirakawa, I.and Omura, K., 1985.Object modeling by distribution function and a method of image generation.Transactions of the Institute of Electronics and Communication Engineers of Japan, J68-D(4):718-725.

[17]Sederberg,T.W.and Parry,S., 1986.Free-form deformation of solid geometric models.Proceedings of SIGGRAPH'86, Computer Graphics, 20(4):151-160.

[18]Singh,K.and Fiume,E., 1998.Wires: A Geometric Deformation Technique.Proceedings of SIGGRAPH'98, ACM Press, New York, p.405-414.

[19]Turk,G.and O'Brien,J., 1999.Shape Transformation Using Variational Implicit Functions.Proceedings of SIGGRAPH'99, ACM Press, New York,p.335-342.

[20]Wyvill,G., McPheeters, C.and Wyvill,B., 1986.Data structure for soft objects.The Visual Comuter,2(4):227-234.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE