CLC number: X505
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 11
Clicked: 6333
ZHANG Xing-wang, ZHOU Ming-hua, LEI Le-cheng, XU Su. Synthesis of TiO2 supported on activated carbon by MOCVD: operation parameters study[J]. Journal of Zhejiang University Science A, 2004, 5(12): 1548-1553.
@article{title="Synthesis of TiO2 supported on activated carbon by MOCVD: operation parameters study",
author="ZHANG Xing-wang, ZHOU Ming-hua, LEI Le-cheng, XU Su",
journal="Journal of Zhejiang University Science A",
volume="5",
number="12",
pages="1548-1553",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.1548"
}
%0 Journal Article
%T Synthesis of TiO2 supported on activated carbon by MOCVD: operation parameters study
%A ZHANG Xing-wang
%A ZHOU Ming-hua
%A LEI Le-cheng
%A XU Su
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 12
%P 1548-1553
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.1548
TY - JOUR
T1 - Synthesis of TiO2 supported on activated carbon by MOCVD: operation parameters study
A1 - ZHANG Xing-wang
A1 - ZHOU Ming-hua
A1 - LEI Le-cheng
A1 - XU Su
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 12
SP - 1548
EP - 1553
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.1548
Abstract: The metallo-organic chemical vapor deposition (MOCVD) technique has been applied to the preparation of the photocatalyst titanium dioxide supported on activated carbon. The effects of various condition parameters such as carrier gas flow rate, source temperature and deposition temperature on the deposition rate were investigated. The maximum deposition rate of 8.2 mg/(g·h) was obtained under conditions of carrier gas flow rate of 400 ml/min, source temperature of 423 K and deposition temperature of 913 K. The deposition rate followed Arrhenius behavior at temperature of 753 K to 913 K, corresponding to activation energy Ea of 51.09 kJ/mol. TiO2 existed only in anatase phase when the deposition temperature was 773 K to 973 K. With increase of deposition temperature from 1073 K to 1273 K, the rutile content sharply increased from 7% to 70%. It was found that a deposition temperature of 773 K and a higher source temperature of 448 K resulted in finely dispersed TiO2 particles, which were mainly in the range of 10~20 nm.
[1] Choy, K.L., 2003. Chemical vapor deposition of coating. Prog. Mater. Sci., 48:57-170.
[2] Fujishima, A., Honda, K., 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature, 37(1):238-245.
[3] Hierso, J.C., Feurer, R., Kalck, P., 2000. Platinum andpalladium films obtained by low-temperature MOCVD for the formation of small particles on divided supports as catalytic materials. Chem. Mater., 12:390-399.
[4] Lei, L., Chu, H., Hu, X.J., Yue, P.L., 1999. Preparation of heterogeneous photocatalyst (TiO2/Alumina) by MOCVD. Ind. Eng. Chem. Res., 38:3381-3385.
[5] Moene, R., Makkee, M., Moulijn, J.A., 1993. Chemical vapor deposition as a novel technique for catalyst preparation: modeling of active phase profiles. Chem. Eng. J., 53:13-24.
[6] Serp, P., Feurer, R., Morancho, R., Kalck, P., 1995. A versatile one-step method for the preparation of highly dispersed metal supported catalysts. J. Mol. Catal. A: Chem., 101:107-110.
[7] Snell, F.R.D., Ettre, L.S., 1974. Encyclopedia of Industrial Chemical Analysis. Interscience, New York, U.S.A, p.107-109.
[8] Sopyan, I., Watanabe, M., Murasawa, S., Hashimoto, K., Fujishima, A., 1996. An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation. J. Photochem. Photobiol. A., 98:79-86.
[9] Spur, R.A., Myers, H., 1957. Quantitative analysis of anantase-rutile mixtures with an X-ray diffractometer. Anal. Chem., 29:760-762.
[10] Tsukasa, T., Shigeyoshi, I., Susumu, K., Yoneyama, H., 1996. Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide. Environ. Sci. Technol., 30:1275-1281.
[11] Zhang, Q., Griffin, G.L., 1995. Gas-phase kinetics for TiO2 CVD: hot-wall reactor results. Thin Solid Films, 263:65-71.
[12] Zhang, L.Y., Sun, Y.J., Yao, X., 1998. Preparation of nano TiO2 powder by MOCVD Process TiO2. Chinese J. Silicon, 17(5):22-32.
Open peer comments: Debate/Discuss/Question/Opinion
<1>