Full Text:   <3672>

CLC number: TP183

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 9

Clicked: 8876

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2005 Vol.6 No.10 P.1084-1089

http://doi.org/10.1631/jzus.2005.A1084


Modelling and control PEMFC using fuzzy neural networks


Author(s):  SUN Tao, YAN Si-jia, CAO Guang-yi, ZHU Xin-jian

Affiliation(s):  Fuel Cell Institute, Department of Automation, Shanghai Jiao Tong University, Shanghai 200030, China; more

Corresponding email(s):   xiaosuntao@sjtu.edu.cn, xiaosuntao@126.com

Key Words:  Proton exchange membrane fuel cell, Adaptive neural-networks fuzzy infer system, Modeling, Neural network


SUN Tao, YAN Si-jia, CAO Guang-yi, ZHU Xin-jian. Modelling and control PEMFC using fuzzy neural networks[J]. Journal of Zhejiang University Science A, 2005, 6(10): 1084-1089.

@article{title="Modelling and control PEMFC using fuzzy neural networks",
author="SUN Tao, YAN Si-jia, CAO Guang-yi, ZHU Xin-jian",
journal="Journal of Zhejiang University Science A",
volume="6",
number="10",
pages="1084-1089",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A1084"
}

%0 Journal Article
%T Modelling and control PEMFC using fuzzy neural networks
%A SUN Tao
%A YAN Si-jia
%A CAO Guang-yi
%A ZHU Xin-jian
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 10
%P 1084-1089
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A1084

TY - JOUR
T1 - Modelling and control PEMFC using fuzzy neural networks
A1 - SUN Tao
A1 - YAN Si-jia
A1 - CAO Guang-yi
A1 - ZHU Xin-jian
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 10
SP - 1084
EP - 1089
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A1084


Abstract: 
Proton exchange membrane generation technology is highly efficient, clean and considered as the most hopeful “green” power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online. This paper first simply analyzes the characters of the PEMFC; and then uses the approach and self-study ability of artificial neural networks to build the model of the nonlinear system, and uses the adaptive neural-networks fuzzy infer system (ANFIS) to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusts the model parameters to control it online. The model and control are implemented in SIMULINK environment. Simulation results showed that the test data and model agreed well, so it will be very useful for optimal and real-time control of PEMFC system.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Arriaqada, J., Olausson, P., Selimoric, A., 2002. Artificial neural network simulator for SOFC performance prediction. Journal of Power Sources, 112:54-60.

[2] Baschuk, J.J., Li, X., 2000. Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding. Journal of Power Sources, 86:181-196.

[3] Bender, G., Wilson, M.S., Zawodzinski, T.A., 2003. Further refinements in the segmented cell approach to diagnosing performance in polymer membrane fuel cells. Journal of Power Sources, 123:163-171.

[4] Berning, T., Djilali, N., 2003. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell−A parametric study. Journal of Power Sources, 124:440-452.

[5] Berning, T., Lu, D.M., Djilali, N., 2002. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. Journal of Power Sources, 106:284-294.

[6] Chen, S., Bilings, S.A., 1992. Neural networks for nonlinear dynamic system modeling and identification. International Journal of Control, 56(2):319-346.

[7] Efe, M.O., Kaynak, O., 1999. Neuro-fuzzy Approaches for Identification and Control of Nonlinear Systems. Proceedings of the IEEE International Symposium on Industrial Electronics, p.TU2-TU11.

[8] Fowler, M.W., Mann, R.F., Amphlett, J.C., Peppley, B.A., Roberge, P.R., 2002. Incorporation of voltage degradation into a generalized steady state electrochemical model for a PEM fuel cell. Journal of Power Sources, 106:274-283.

[9] Kim, Y.H., Kim, S.S., 1999. An electrical modeling and fuzzy logic control of a fuel cell generation system. IEEE Transactions on Energy Conversion, 14(2):239-244.

[10] Rowe, A., Li, X., 2001. Mathematical modeling of proton exchange membrane fuel cells. Journal of Power sources, 102:82-96.

[11] Sakhare, A., Davari, A., 2003. Control of Stand Solid Oxide Fuel Cell Using Fuzzy Logic. Proceedings of the 35th Southeastern Symposium on System Theory, p.473-476.

[12] Shen, C., Cao, G.Y., 2002. Nonlinear modeling and adaptive fuzzy control of MCFC stack. Journal of Process Control, 12:831-839.

[13] Sun, T., Cao, G., Zhu, X., 2005. Nonlinear modeling of PEMFC based on neural networks identification. J Zhejiang Univ SCI, 6A(5):365-370.

[14] Wang, L.X., Jerry, M.M., 1992. Back Propagation Fuzzy System as Nonlinear Dynamic System Identifiers. IEEE International Conference on Fuzzy Systems, p.1409-1418.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

ilkim@No address<ilkimozdemir@gmail.com>

2012-08-27 04:49:03

Article seems useful to improve the online control mechanisms with ANFIS.

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE