Full Text:   <1146>

CLC number: TP391.41

On-line Access: 

Received: 2005-01-25

Revision Accepted: 2005-06-22

Crosschecked: 0000-00-00

Cited: 0

Clicked: 2359

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2005 Vol.6 No.100 P.47~52


Video segmentation using Maximum Entropy Model

Author(s):  QIN Li-juan, ZHUANG Yue-ting, PAN Yun-he, WU Fei

Affiliation(s):  School of Computer Science, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   qinlijuan@hotmail.com

Key Words:  Layers segmentation, Maximum Entropy Model, Visual surveillance

QIN Li-juan, ZHUANG Yue-ting, PAN Yun-he, WU Fei. Video segmentation using Maximum Entropy Model[J]. Journal of Zhejiang University Science A, 2005, 6(100): 47~52.

@article{title="Video segmentation using Maximum Entropy Model",
author="QIN Li-juan, ZHUANG Yue-ting, PAN Yun-he, WU Fei",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Video segmentation using Maximum Entropy Model
%A QIN Li-juan
%A ZHUANG Yue-ting
%A PAN Yun-he
%A WU Fei
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 100
%P 47~52
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.AS0047

T1 - Video segmentation using Maximum Entropy Model
A1 - QIN Li-juan
A1 - ZHUANG Yue-ting
A1 - PAN Yun-he
A1 - WU Fei
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 100
SP - 47
EP - 52
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.AS0047

Detecting objects of interest from a video sequence is a fundamental and critical task in automated visual surveillance. Most current approaches only focus on discriminating moving objects by background subtraction whether or not the objects of interest can be moving or stationary. In this paper, we propose layers segmentation to detect both moving and stationary target objects from surveillance video. We extend the Maximum Entropy (ME) statistical model to segment layers with features, which are collected by constructing a codebook with a set of codewords for each pixel. We also indicate how the training models are used for the discrimination of target objects in surveillance video. Our experimental results are presented in terms of the success rate and the segmenting precision.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Berger, A.L., Della Pietra, S.A., Della Pietra, V.J., 1996. A maximum entropy approach to natural language processing. Computational Linguistics, 22(1):39-71.

[2] Cucchiara, R., Grana, C., Piccardi, M., Prati, A., 2003. Detecting moving objects, ghosts and shadows in video streams. IEEE Trans. on Patt. Anal. and Machine Intell., 25(1):1337-1342.

[3] Chalidabhongse, T.H., Kim, K., Harwood, D., Davis, L., 2003. A Perturbation Method for Evaluation Background Subtraction Algorithms. Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[4] Dick, A.R., Brooks, M.J., 2003. Issues in Automated Visual Surveillance. International Conference on Digital Image Computing: Techniques and Applications.

[5] Elgammal, A., Harwood, D., Davis, L.S., 2000. Non-Parametric Model for Background Subtraction. European Conf. Computer Vision, 2:751-767.

[6] Hsu, W., Chang, S.F., Huang, C.W., Kennedy, L., Lin, C.Y., Lyengar, G., 2004. Discovery and Fusion of Salient Multi-modal Features towards News Story Segmentation. IS&T/SPIE Symposium on Electronic Imaging: Science and Technology

[7] Horprasert, T., Harwood, D., Davis, L.S., 1999. A Statistical Approach for Real-time Robust Background Subtraction and Shadow Detection. IEEE Frame-Rate Applications Workshop.

[8] Horn, B.K.P., 1986. Robot Vision. The MIT Press, p.66-69, 299-333.

[9] Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L., 2004. Background Modeling and Subtraction by Codebook Construction. IEEE International Conference on Image Processing.

[10] Lee, D.S., Hull, J.J., Erol, B., 2003. A Bayesian Framework for Gaussian Mixture Background Modelling. IEEE International Conference on Image Processing.

[11] Porikli, F., Tuzel, O., 2003. Human Body Tracking by Adaptive Background Models and Mean-Shift Analysis. IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.

[12] Sen-Ching, S., Cheung, C.K., 2004. Robust Techniques for Background Subtraction in Urban Traffic Video. Proceedings of SPIE.

[13] Stauffer, C., Grimson, W.E.L., 1999. Adaptive Background Mixture Models for Real-time Tracking. IEEE Int. Conf. Computer Vision and Pattern Recognition, 2:246-252.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE