CLC number: O441; TN204
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 6367
Hao Yang. From electromagnetic bandgap to left-handed metamaterials: modelling and applications[J]. Journal of Zhejiang University Science A, 2006, 7(1): 34-40.
@article{title="From electromagnetic bandgap to left-handed metamaterials: modelling and applications",
author="Hao Yang",
journal="Journal of Zhejiang University Science A",
volume="7",
number="1",
pages="34-40",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A0034"
}
%0 Journal Article
%T From electromagnetic bandgap to left-handed metamaterials: modelling and applications
%A Hao Yang
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 1
%P 34-40
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A0034
TY - JOUR
T1 - From electromagnetic bandgap to left-handed metamaterials: modelling and applications
A1 - Hao Yang
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 1
SP - 34
EP - 40
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A0034
Abstract: In this paper, numerical modelling of left-handed materials (LHMs) is presented using in-house and commercial software packages. Approaches used include the finite-difference time-domain (FDTD) method, finite element method (FEM) and method of moments (MoMs). Numerical simulation includes verification of negative refraction and “perfect lenses” construction, investigation of evanescent wave behaviour in layered LHMs, reversed Snell’s Law in electromagnetic band gap (EBG)-like structures and construction of LHMs using modified split ring resonators (SRRs). Numerical results were verified to be in good agreement with theory. At the end of this paper, potential applications of LHMs in microwave engineering are discussed.
[1] Collin, R.E., 1966. Foundations for Microwave Engineering. Sec 8.9. McGraw-Hill Kogakusha Ltd.
[2] Garcia, N., Nieto-Vesperinas, M., 2002. Left-handed materials do not make a perfect lens. Phys. Rev. Lett., 88(20):207403.
[3] Gedney, S.D., 1996. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Trans. Antenna and Propagation, 44(12): 1630-1639.
[4] Grbic, A., Eleftheriades, G.V., 2003. Growing evanescent waves in negative-refractive-index transmission-line media. Applied Physics Letters, 82(12):1815-1817.
[5] Hao, Y., Parini, C.G., 2002. Isolation enhancement of anisotropic UC-PBG microstrip diplexer patch antenna. IEEE Antennas and Wireless Propagation Letters, 1:135-137.
[6] Hao, Y., Parini, C.G., 2003. Microstrip antennas on various UC-PBG substrates. IEICE Trans. on Electronics, Special Issue on Microwave and Millimeter-wave Technology.
[7] Hao, Y., Railton, C.J., 1998. Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD meshes. IEEE Transactions on Microwave Theory & Techniques, 46(1):82-88.
[8] Hao, Y., Sudhakaran, S., Parini, C.G., 2003. Spatial Harmonics Effects on Characterisation of Left-Handed Metamaterials. Asia-Pacific Microwave Conference, Korea.
[9] Hao, Y., Alomainy, A., Parini, C.G., 2004. Antenna beam shaping from offset defects in UC-EBG cavities. Microwave and Optical Technology Letters, 43(2):108-112.
[10] Lu, L., Hao, Y., Parini, C.G., 2004. Dispersive FDTD characterization of no phase-delay radio transmission over layered left-handed meta-materials structure. IEE Proceedings-Science Measurement and Technology, 151(6): 403-406.
[11] Luo, C.Y., Johnson, S.G., Joannopolous, J.D., Pendry, J.B., 2003. Negative refraction without negative index in metallic photonic crystals. Optics Express, 11(7):746-754.
[12] Feise, M.W., Bebelacqua, P.J., Schneider, J.B., 2002. Effects of surface waves on the behavior of perfect lenses. Physical Review B, 66:035113.
[13] Parimi, P.V., Lu, W.T., Vodo, P., Sokoloff, J., Sridhar, S., 2004. Negative refraction and left-handed electromagnetism in microwave photonic crystals. Phys. Rev. Lett., 92:127401.
[14] Pendry, J.B., 2000. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85:3966.
[15] Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., 1999. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory & Techniques, 47(11):2075-2084.
[16] Ramakrishna, S.A., Pendry, J.B., 2002. The asymmetric lossy near-perfect lens. Journal of Modern Optics, 49(10): 1747-1762.
[17] Shamonina, E., Kalinin, V.A., Ringhofer, K.H., Solymar, L., 2001. Imaging, compression and Poynting vector streamlines for negative permittivity materials. Electronics Letters, 37(20):1243-1244.
[18] Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., 2000. Composite media with simultaneously negative permeability and permittivity. Phys. Rev. Lett., 84:4184-4187.
[19] Sudhakaran, S., Hao, Y., Parini, C.G., 2004. An enhanced prediction of negative refraction from EBG-like structures. Microwave and Optical Technology Letters, 41(4):258-261.
[20] Sudhakaran, S., Hao, Y., Parini, C.G., 2005. Negative refraction phenomenon at multiple frequency bands from electromagnetic crystals. Microwave and Optical Technology Letters, 45(6):465-469.
[21] Veselago, V.G., 1968. The electrodynamics of substances with simultaneously negative values of ( and µ. Soviet Physics Uspekhi, 10(4):509-514.
[22] Yee, K.S., 1966. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagation, 14:302-307.
[23] Zhao, Y., Hao, Y., Parini, C.G., 2005. Radiation properties of PIFA on UC-EBG substrates. Microwave and Optical Technology Letters, 44(1):21-24.
[24] Ziolkowski, R.W., Heyman, E., 2001. Wave propagation in media having negative permittivity and permeability. Phys. Rev. E, 64:056625.
Open peer comments: Debate/Discuss/Question/Opinion
<1>