CLC number: TP39
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 6110
WAN Ming, ZHANG Wei, MURRAY Marie O., KAUFMAN Arie. Automatic target tracking on multi-resolution terrain[J]. Journal of Zhejiang University Science A, 2006, 7(7): 1275-1281.
@article{title="Automatic target tracking on multi-resolution terrain",
author="WAN Ming, ZHANG Wei, MURRAY Marie O., KAUFMAN Arie",
journal="Journal of Zhejiang University Science A",
volume="7",
number="7",
pages="1275-1281",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1275"
}
%0 Journal Article
%T Automatic target tracking on multi-resolution terrain
%A WAN Ming
%A ZHANG Wei
%A MURRAY Marie O.
%A KAUFMAN Arie
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 7
%P 1275-1281
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1275
TY - JOUR
T1 - Automatic target tracking on multi-resolution terrain
A1 - WAN Ming
A1 - ZHANG Wei
A1 - MURRAY Marie O.
A1 - KAUFMAN Arie
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 7
SP - 1275
EP - 1281
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1275
Abstract: We propose a high-performance path planning algorithm for automatic target tracking in the applications of real-time simulation and visualization of large-scale terrain datasets, with a large number of moving objects (such as vehicles) tracking multiple moving targets. By using a modified dijkstra’s algorithm, an optimal path between each vehicle-target pair over a weighted grid-presented terrain is computed and updated to eliminate the problem of local minima and losing of tracking. Then, a dynamic path re-planning strategy using multi-resolution representation of a dynamic updating region is proposed to achieve high-performance by trading-off precision for efficiency, while guaranteeing accuracy. Primary experimental results showed that our algorithm successfully achieved 10 to 96 frames per second interactive path-replanning rates during a terrain simulation scenario with 10 to 100 vehicles and multiple moving targets.
[1] Cohen-Or, D., Rich, E., Lerner, U., Shenkar, V., 1996. A real-time photo-realistic visual flythrough. IEEE Transactions on Visualization and Computer Graphics, 2(3):255-265.
[2] Dijkstra, E., 1959. A note on two problems in connexion the graphs. Numerische Mathematik, 1(1):269-271.
[3] Hoppe, H., 1998. Smooth View-Dependent Level-of-Detail Control and Its Application to Terrain Rendering. Proc. IEEE Visualization Conference, p.35-42.
[4] Khatib, O., 1986. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1):90-98.
[5] Latombe, J., 1991. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA.
[6] Latombe, J., 1999. Motion planning: a journey of robots, molecules, digital actors, and other artifacts. International Journal of Robotics Research, Special Issue on Robotics at the Millennium—Part I, 18(11):1119-1128.
[7] Wan, M., Qu, H., Kaufman, A., 1999. Virtual Flythrough over Voxel-Based Terrain. Proc. IEEE Virtual Reality Conference, p.53-60.
[8] Wan, M., Dachille, F., Kaufman, A., 2001. Distance-Field Based Skeletons for Virtual Navigation. Proc. IEEE Visualization Conference, p.239-245.
[9] Xia, J., El-Sana, J., Varshney, A., 1997. Adaptive real-time level-of-detail-based rendering for polygonal models. IEEE Transactions on Visualization and Computer Graphics, 3(2):171-183.
Open peer comments: Debate/Discuss/Question/Opinion
<1>