Full Text:   <3829>

CLC number: TG312

On-line Access: 

Received: 2005-11-24

Revision Accepted: 2006-03-06

Crosschecked: 0000-00-00

Cited: 9

Clicked: 5112

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.8 P.1453-1460

http://doi.org/10.1631/jzus.2006.A1453


Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMnTi


Author(s):  YANG Hui, LI Zhen-hong, ZHANG Zhi-liang

Affiliation(s):  Department of Plasticity Technology, Shanghai Jiao Tong University, Shanghai 200030, China

Corresponding email(s):   aliceyangh@163.com

Key Words:  Zener-Hollomon parameter, Warm-hot deformation, 20CrMnTi, Grain size


Share this article to: More <<< Previous Article|

YANG Hui, LI Zhen-hong, ZHANG Zhi-liang. Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMnTi[J]. Journal of Zhejiang University Science A, 2006, 7(8): 1453-1460.

@article{title="Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMnTi",
author="YANG Hui, LI Zhen-hong, ZHANG Zhi-liang",
journal="Journal of Zhejiang University Science A",
volume="7",
number="8",
pages="1453-1460",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1453"
}

%0 Journal Article
%T Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMnTi
%A YANG Hui
%A LI Zhen-hong
%A ZHANG Zhi-liang
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 8
%P 1453-1460
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1453

TY - JOUR
T1 - Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMnTi
A1 - YANG Hui
A1 - LI Zhen-hong
A1 - ZHANG Zhi-liang
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 8
SP - 1453
EP - 1460
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1453


Abstract: 
The warm-hot deformation behavior of 20CrMnTi steel was studied with hot compression tests at temperature range of 1123~1273 K and strain rate of 0.1~20 s−1. The activation energy for warm-hot deformation is 426.064 KJ/mol. The influences of zener-Hollomon parameter, strain and grain size imposing on the flow stress were analyzed in the temperature range of warm-hot forging. Creep theory and mathematical theory of statistics were used to obtain mathematical models of flow stress. The research and results provide scientific basis for controlling microstructure of forging process through zener-Hollomon parameter.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Cho, S.H., Kang, K.B., Jonas, J.J., 2001. Mathematical modeling of the recrystallization kinetics of Nb microalloyed steels. ISIJ International, 41(7):766-773.

[2] Elwazri, A.M., Wanjara, P., Yue, S., 2003. Dynamic recrystallization of austenite in microalloyed high carbon steels. Materials Science and Engineering A, 339(1-2):209-215.

[3] Hirschvogel, M., Dommelen, H., 1992. Some applications of cold and warm forging. Journal of Materials Processing Technology, 35(3-4):343-356.

[4] Hodgson, P.D., 1996. Microstructure modelling for property prediction and control. Journal of Materials Processing Technology, 60(1-4):27-33.

[5] Jonas, J. J., Sellars, C., Tegart, M., 1969. Strength and stucture under hot working conditions. Int. Metallurgical Reviews, 14:1-24.

[6] Lange, K., 1997. Modern metal forming technology for industrial production. Journal of Materials Processing Technology, 71(1):2-13.

[7] Poliak, E.I., Jonas, J.J., 2003. Critical strain for dynamic recrystallization in variable strain rate hot deformation. ISIJ International, 43(5):692-700.

[8] Sakai, T., 1995. Dynamic recrystallization microstructures under hot working conditions. Journal of Materials Processing Technology, 53(1-2):349-361.

[9] Serajzadeh, S., Mirbagheri, S.M.H., Taheri, A.K., Zebarjad, S.M., 2004. Modelling of metal flow during hot forging with regard to microstructural aspects. International Journal of Machine Tools and Manufacture, 44(14):1537-1545.

[10] Sheljaskov, S., 1994. Current level of development of warm forging technology. Journal of Materials Processing Technology, 46(1-2):3-18.

[11] Shivpuri, R., Babu, S., Kini, S., Pauskar, P., Deshpande, A., 1994. Recent advances in cold and warm forging process modeling techniques: selected examples. Journal of Materials Processing Technology, 46(1-2):253-274.

[12] Siegert, K., Kammerer, M., Keppler-Ott, T., Ringhand, D., 1997. Recent developments on high precision forging of aluminum and steel. Journal of Materials Processing Technology, 71(1):91-99.

[13] Venugopal, S., Mannan, S.L., Rodriguez, P., 2002. Optimum design of a hot extrusion process for AISI type 304L stainless steel using a model for the evolution of microstructure. Modelling and Simulation in Materials Science and Engineering, 10(3):253-265.

[14] Zhang, Z.L., 1986. Warm Forging Technology. Shanghai Science and Technology Publishing House, Shanghai, p.2-38 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE