CLC number: TP391
On-line Access:
Received: 2006-03-20
Revision Accepted: 2006-05-10
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5669
LIU Yong-jin, TANG Kai, JOENJA Ajay. A new representation of orientable 2-manifold polygonal surfaces for geometric modelling[J]. Journal of Zhejiang University Science A, 2006, 7(9): 1578-1588.
@article{title="A new representation of orientable 2-manifold polygonal surfaces for geometric modelling",
author="LIU Yong-jin, TANG Kai, JOENJA Ajay",
journal="Journal of Zhejiang University Science A",
volume="7",
number="9",
pages="1578-1588",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1578"
}
%0 Journal Article
%T A new representation of orientable 2-manifold polygonal surfaces for geometric modelling
%A LIU Yong-jin
%A TANG Kai
%A JOENJA Ajay
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 9
%P 1578-1588
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1578
TY - JOUR
T1 - A new representation of orientable 2-manifold polygonal surfaces for geometric modelling
A1 - LIU Yong-jin
A1 - TANG Kai
A1 - JOENJA Ajay
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 9
SP - 1578
EP - 1588
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1578
Abstract: Many graphics and computer-aided design applications require that the polygonal meshes used in geometric computing have the properties of not only 2-manifold but also are orientable. In this paper, by collecting previous work scattered in the topology and geometry literature, we rigorously present a theoretical basis for orientable polygonal surface representation from a modern point of view. Based on the presented basis, we propose a new combinatorial data structure that can guarantee the property of orientable 2-manifolds and is primal/dual efficient. Comparisons with other widely used data structures are also presented in terms of time and space efficiency.
[1] Akleman, E., Chen, J., 1999. Guaranteeing the 2-manifold property for meshes with doubly linked face list. International Journal of Shape Modelling, 5(2):159-177.
[2] Akleman, E., Chen, J., Srinivasan, V., 2003. A minimal and complete set of operators for the development of robust manifold mesh modelers. Graphical Models, 65(5):286-304.
[3] Ansaldi, S., Floriani, L.D., Falcidieno, B., 1985. Geometric modelling of solid objects by using a face adjacent graph representation. ACM SIGGRAPH Computer Graphics, 19(3):131-139.
[4] Baumgart, B.G., 1972. Winged-edge Polyhedron Representation. Technical report, STAN-CS-320, Stanford University.
[5] Cooke, G.E., Finney, R.L., 1967. Homology of Cell Complexes. Princeton University Press.
[6] de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O., 1997. Computational Geometry: Algorithms and Applications. Springer.
[7] do Carmo, M.P., 1976. Differential Geometry for Curves and Surfaces. Prentice-Hall.
[8] Edelsbrunner, H., 1987. Algorithms in Combinatorial Geometry, EATCS Monographs on Theoretical Computer Science (Vol. 10). Springer-Verlag.
[9] Fomenko, A.T., Kunii, T.L., 1997. Topological Modelling for Visualization. Springer.
[10] Giblin, P.J., 1981. Graphs, Surfaces and Homology (2nd Ed.). Chapman and Hall.
[11] Gross, J.L., Tucker, T.W., 1987. Topological Graph Theory. Wiley-Interscience.
[12] Guibas, L., Stolfi, J., 1985. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. on Graphics, 4(2):74-123.
[13] Mantyla, M., 1988. An Introduction to Solid Modelling. Computer Science Press.
[14] Preparata, F.P., Shamos, M.I., 1985. Computational Geometry: An Introduction. Springer-Verlag.
[15] Sieradski, A.J., 1992. An Introduction to Topology and Homotopy. PWS-KENT Pub.
[16] Weiler, K., 1985. Edge-based data structures for solid modelling in curved-surface environments. IEEE Computer Graphics and Applications, 5(1):21-40.
Open peer comments: Debate/Discuss/Question/Opinion
<1>