CLC number: O343.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 2
Clicked: 5012
KHELIL N., BENSALAH N., SAIDI H., ZERARKA A.. Artificial perturbation for solving the Korteweg-de Vries equation[J]. Journal of Zhejiang University Science A, 2006, 7(12): 2079-2082.
@article{title="Artificial perturbation for solving the Korteweg-de Vries equation",
author="KHELIL N., BENSALAH N., SAIDI H., ZERARKA A.",
journal="Journal of Zhejiang University Science A",
volume="7",
number="12",
pages="2079-2082",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A2079"
}
%0 Journal Article
%T Artificial perturbation for solving the Korteweg-de Vries equation
%A KHELIL N.
%A BENSALAH N.
%A SAIDI H.
%A ZERARKA A.
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 12
%P 2079-2082
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A2079
TY - JOUR
T1 - Artificial perturbation for solving the Korteweg-de Vries equation
A1 - KHELIL N.
A1 - BENSALAH N.
A1 - SAIDI H.
A1 - ZERARKA A.
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 12
SP - 2079
EP - 2082
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A2079
Abstract: A perturbation method is introduced in the context of dynamical system for solving the nonlinear korteweg-de Vries (KdV) equation. Best efficiency is obtained for few perturbative corrections. It is shown that, the question of convergence of this approach is completely guaranteed here, because a limited number of term included in the series can describe a sufficient exact solution. Comparisons with the solutions of the quintic spline, and finite difference are presented.
[1] Boiti, M., Leon, J.J.P., Martina, L., Pempinelli, F., 1988. Scattering of localized solitons in the plane. Phys. Lett. A, 132(8-9):432-439.
[2] Cherruault, Y., Saccomandi, G., Some, B., 1992. New results for convergence of Adomian’s method. Math. Comput. Modelling, 16(2):85-93.
[3] El-Zoheiry, H., Iskandar, L., El-Naggar, B., 1994. The quintic spline for solving the Korteweg-de Vries equation. Mathematics and Computers in Simulation, 37(6):539-549.
[4] Fang, J.Q., Yao, W.G., 1992. Adomian’s Decomposition Method for the Solution of Generalized Duffing Equations. Proc. Internat. Workshop on Mathematics Mechanization, Beijing, China.
[5] Fornberg, B., Whitham, G.B., 1978. A numerical and theoretical study of certain nonlinear wave phenomena. Phil. Trans. Royal Soc. London, 289:373-404.
[6] Freeman, N.C., Johnson, R.S., 1970. Shallow water waves on shear flows. Journal of Fluid Mechanics, 42(2):401-409.
[7] Gardner, C.S., Green, J.M., Kruskal, M.D., Miura, R.M., 1967. Method for solving the KdV equation. Phys. Rev. Lett., 19(19):1095-1097.
[8] Hirota, R., 1971. Exact solution of KdV equation for multiple collisions of solitons. Phys. Rev. Lett., 27(18):1192-1194.
[9] Iskandar, L., 1989. New numerical solution of the Korteweg-de Vries equation. Appl. Num. Math., 5(3):215-221.
[10] Korteweg, D.J., de Vries, G., 1895. On the change of the form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag., 39:422-443.
[11] Tang, T., Xue, W.M., Zhang, P.W., 2001. Analysis of moving mesh methods based on geometrical variables. J. of Comp. Math., 19(1):41-54.
[12] Scott, A.C., Chu, E.Y.F., McLaughlin, D.W., 1973. The soliton: A new concept in applied science. Proc. of IEEE, 61:1443-1483.
[13] Zerarka, A., 1996. Solution of Korteweg-de Vries Equation by Decomposition Method. Internat. Cong. on Math. Appl. and Ingeen. Sc., Casablanca.
Open peer comments: Debate/Discuss/Question/Opinion
<1>