Full Text:   <3381>

CLC number: P58; P59

On-line Access: 

Received: 2006-10-20

Revision Accepted: 2006-11-21

Crosschecked: 0000-00-00

Cited: 1

Clicked: 6055

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2007 Vol.8 No.7 P.1011-1020

http://doi.org/10.1631/jzus.2007.A1011


Geochemical characteristics of the fluid inclusions in the Gangxi Fault Belt, Huanghua Depression, Bohai Bay Basin, China


Author(s):  DING Wei-wei, DAI Jin-xing, CHU Feng-you, HAN Xi-qiu

Affiliation(s):  Key Laboratory of Submarine Geoscience, the State Oceanic Administration, Hangzhou 310012, China; more

Corresponding email(s):   wwdingsio@yahoo.com.cn

Key Words:  Gangxi Fault Belt, Fluid inclusion, Composition, Mantle-derived, Maturity, Local tectonic setting


DING Wei-wei, DAI Jin-xing, CHU Feng-you, HAN Xi-qiu. Geochemical characteristics of the fluid inclusions in the Gangxi Fault Belt, Huanghua Depression, Bohai Bay Basin, China[J]. Journal of Zhejiang University Science A, 2007, 8(7): 1011-1020.

@article{title="Geochemical characteristics of the fluid inclusions in the Gangxi Fault Belt, Huanghua Depression, Bohai Bay Basin, China",
author="DING Wei-wei, DAI Jin-xing, CHU Feng-you, HAN Xi-qiu",
journal="Journal of Zhejiang University Science A",
volume="8",
number="7",
pages="1011-1020",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1011"
}

%0 Journal Article
%T Geochemical characteristics of the fluid inclusions in the Gangxi Fault Belt, Huanghua Depression, Bohai Bay Basin, China
%A DING Wei-wei
%A DAI Jin-xing
%A CHU Feng-you
%A HAN Xi-qiu
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 7
%P 1011-1020
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1011

TY - JOUR
T1 - Geochemical characteristics of the fluid inclusions in the Gangxi Fault Belt, Huanghua Depression, Bohai Bay Basin, China
A1 - DING Wei-wei
A1 - DAI Jin-xing
A1 - CHU Feng-you
A1 - HAN Xi-qiu
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 7
SP - 1011
EP - 1020
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1011


Abstract: 
We studied the geochemical characteristics of the fluid inclusions in the Ordovician carbonates and the Oligocene Shahejie Formation sandstones from 15 wells in the gangxi Fault Belt, Huanghua Depression. The fluid inclusions are all secondary with gas/liquid ratio of 5%~10%. Base on Raman they are mainly composed of H2O, CO2 and CH4. The homogenization temperatures, combined with burial and geothermal history of the host rock, indicate that the fluid flows in the Shahejie Formation and the Ordovician carbonates were trapped in Neocene. Using a VG5400 mass spectrometer, the helium isotopic compositions were analyzed. Interpretation of results suggested a significant amount of mantle-derived helium mainly accumulating in the intersections of the NWW trending Xuzhuangzi and NE trending Gangxi faults. The maturity of hydrocarbon decreases from the intersection to the outside pointing out that the fluid related to the NWW trending Xuzhuangzi and NE trending Gangxi faults. These factors implied the fluid inclusions have a close relationship to the local tectonic setting. gangxi Fault Belt experienced intensive Neo-tectonic activities in Cenozoic. Widespread faulted-depressions and strong volcanic eruptions manifested its tectonic status of extensional stress field. Mantle uplift caused the movement of magma that carried mantle-derived gases and deep heat flows, the deep-rooted tension faults provided the passages for the gases and heat flows to shallow crust levels.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Allègre, C., Moreira, M., Staudacher, T., 1995. 4He/3He dispersion and mantle convection. Geophys. Res. Lett., 22(17):2325-2328.

[2] Aplin, A.C., Macleod, G., Larter, S.R., Pedersen, K.S., Soenshen, H., Booth, T., 1999. Combined use of Confocal Laser Scanning Microsscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions. Marine and Petroleum Geology, 16(2):97-110.

[3] Bach, W., Naumann, D., Erzinger, J., 1999. A helium, argon and nitrogen record of the upper continental crust (KTB drill holes, Oberpfalz, Germany): implications for crustal degassing. Chemical Geology, 160(1-2):81-101.

[4] Behar, F., Kressmann, S., Rudkiewicz, J.L., 1992. Experimental simulation in a confined system and kinetics modelling of kerogen and oil cracking. Organic Geochemistry, 19(1-3):173-189.

[5] Burnard, P.G., Hu, R., Turner, G., Bi, X.W., 1999. Mantle, crustal and atmospheric noble gases in Ailaoshan Gold deposits, Yunan Province, China. Geochimica et Cosmochimica Acta, 63(10):1595-1604.

[6] Cao, J., Yao, S.P., Jin, Z.J., Hu, W.X., Zhang, Y.J., Wang, X.L., Zhang, Y.Q., Tang, Y., 2006. Petroleum migration and mixing in the northwestern Junggar Basin (NW China): constraints from oil-bearing fluid inclusion analyses. Organic Geochemistry, 37(7):827-846.

[7] Dai, C.S., Dai, J.X., Yang, C.Y., 1994. Tectonogeochemical characteristics of inorganic gases in Gangxi Fault of Huanghua Depression. Chinese Science Bulletin, 39(9):748-753.

[8] Dai, J.X., Song, Y., Dai, C.S., Chen, A.F., Sun, M.L., Liao, Y.S., 1995. Conditions Governing the Formation of Abiogenic Gases and Gas Pools in Eastern China. Science Press, Beijing, p.71-77 (in Chinese).

[9] Dallai, L., Magro, G., Perucci, E., Ruggieri, G., 2005. Stable isotope and noble gas isotope compositions of inclusion fluids from Larderello geothermal field (Italy): Constraints to fluid origin and mixing processes. Journal of Volcanology and Geothermal Research, 148(1-2):152-164.

[10] Ding, W.W., Dai, J.X., Yang, C.Y., Tao, S.Z., Hou, L., 2005. Helium isotopic compositions in fluid inclusions of the Gangxi fault belt in the Huanghua Depression, Bohai Bay Basin. Chinese Science Bulletin, 50(22):2621-2627.

[11] Doğan, T., Sumino, H., Nagao, K., Notsu, K., 2006. Release of mantle helium from forearc region of the Southwest Japan arc. Chemical Geology, 233(3-4):235-248.

[12] ECPGDO (Editorial Committee of Petroleum Geology of Dagang Oilfield), 1991. Petroleum Geology of Dagang Field. Petroleum Industry Press, Beijing, p.74-95 (in Chinese).

[13] England, W.A., Mackenzie, A.S., Mann, D.M., Quigley, T.M., 1987. The movement and entrapment of petroleum fluids in the subsurface. Journal of the Geological Society London, 144:327-347.

[14] Feely, M., Parnell, J., 2003. Fluid inclusion studies of well samples from the hydrocarbon prospective porcupine basin, offshore Ireland. Journal of Geochemical Exploration, 78-79:55-59.

[15] Gautheron, C., Moreira, M., Allègre, C., 2005. He, Ne and Ar composition of the European lithospheric mantle. Chemical Geology, 217(1-2):97-112.

[16] Graupner, T., Niedermann, S., Kempe, U., Klemd, R., Bechtel, A., 2006. Origin of ore fluids in the Muruntau gold system: Constraints from noble gas, carbon isotope and halogen data. Geochimica et Cosmochimica Acta, 70(21):5356-5370.

[17] Hawkes, H.E., 1972. Free hydrogen in genesis of petroleum. AAPG Bull, 56(11):2268-2277.

[18] Hoke, L., Poreda, R., Reay, A., 2000. The subcontinental mantle beneath southern New Zealand, characterized by helium isotopes in intraplate basalts and gas-rich springs. Geochimica et Cosmochimica Acta, 64(14):2489-2507.

[19] Hu, R.Z., Burnard, P.G., Bi, X.W., 2004. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jingshajiang fault belt, SW China. Chemical Geology, 203(3-4):305-317.

[20] Ismail, M., Shamsuddin, A.H.M., 1991. Organic matter maturity and its relation to time, temperature and depth in the Bengal Foredeep, Bangladesh. Journal of Southeast Asian Earth Sciences, 5(1-4):381-390.

[21] Jonathan, M.L., 2004. Scattering from a fault interface in the Coso geothermal field. Journal of Volcanology and Geothermal Research, 13(1-2):61-75.

[22] Karlsen, D.A., Nedkvitne, T., Larter, S.T., 1993. Hydrocarbon composition of authigenic inclusions: application to elucidation of petroleum reservoir filling history. Geochimica et Cosmochimica Acta, 57(15):3641-3659.

[23] Kendrick, M.A., Burgess, R., Pattrick, R.A., Turner, G., 2001. Fluid inclusion noble gas and halogen evidence on the origin of Cu-porphyry mineralizing fluids. Geochimica et Cosmochimica Acta, 65(16):2651-2668.

[24] Maurice, P., Jean-Bacques, B., 1997. Thermal history constraints from studies of organic, clay minerals, fluid inclusions and apatite fission tracks at the ardeche paleo-margin. Journal of Sedimentary Research, 67(1):235-240.

[25] McCarty, H.B., Felbeck, G.T.Jr., 1986. High temperature simulation of petroleum formation—IV. Stable carbon isotope studies of gaseous hydrocarbons. Organic Geochemistry, 9(4):183-192.

[26] Moore, J.N., Norman, D.I., Kennedy, B.M., 2001. Fluid inclusion gas compositions from an active magmatic-hydrothermal system: a case study of the Geysers geothermal field, USA. Chemical Geology, 173(1-3):3-30.

[27] Muramatsu, Y., Sawaki, T., Arai, F., 2006. Geochemical study of fluid inclusions from the western upflow zone of the Matsukawa geothermal system, Japan. Geothermics, 35(2):123-140.

[28] Oxburgh, E.R., O’Nions, R.K., 1987. Helium loss, tectonic and the terrestrial heat budget. Science, 237(4822):1583-1588.

[29] Pang, L.S.K., George, S.C., Quezada, R.A., 1998. A study of the gross compositions of oil-bearing fluid inclusions using high performance liquid chromatography. Organic Geochemistry, 29(5-7):1149-1161.

[30] Polyak, B.G., Prasolov, E.M., Cermak, V., 1985. Isotopic compositions of noble gases in geothermal fluids of the Krusne Hary Mts, Czechoslovakiy, and the nature of the local geothermal anomaly. Geochimica et Cosmochimica Acta, 49(3):695-699.

[31] Price, L.C., McNeil, R., 1997. Thoughts on the birth, evolution, and current state of petroleum geochemistry. Journal of Petroleum Geology, 20:118-123.

[32] Ren, J.Y., Kensaka, T., Li, S.T., 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344(3-4):175-205.

[33] Rocholl, A., Heusser, E., Kirsten, T., Oehm, J., Richter, H., 1996. A noble gas profile across a Hawaiian mantle xenolith: Coexisting accidental and cognate noble gases derived from the lithospheric and asthenospheric mantle beneath Oahu. Geochimica et Cosmochimica Acta, 60(23):4773-4783.

[34] Saxby, J.D., Riley, K.W., 1984. Petroleum generation by laboratoryscale pyrolysis over six years simulating conditions in a subsiding basin. Nature, 308(5955):177-179.

[35] Simoneit, B.R.T., 1990. Petroleum generation, an easy and widespread process in hydrothermal system: An overview. Applied Geochemistry, 5(1/2):17-28.

[36] Stiros, S.C., 1995. The 1953 seismic surface fault: Implications for the modeling of the Sousake (Corinth area, Greece) geothermal field. Journal of Geodynamics, 20(2):167-180.

[37] Stuart, F.M., Burnard, P.G., Taylor, R.P., 1995. Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, S. Korea. Geochimica et Cosmochimica Acta, 59(22):4663-4673.

[38] Sun, M.L., Chen, J.F., 1998. Study on the salt deposit crushing by the Vacuum-Electric-Magnetic-Breaker and measurement of noble gas isotope composition. Acta Sedimentologica Sinica, 16(1):103-106 (in Chinese).

[39] Tao, M.X., Xu, Y.C., Shen, P., 1997. Tectonic and geochemical characteristics and reserved conditions of a mantle source gas accumulation zone in Eastern China. Science in China, Ser. D, 40(1):73-80.

[40] Thiéry, R., Pironon, J., Walgenwitz, F., Montel, F., 2002. Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy: influences from applied thermodynamics of oils. Marine and Petroleum Geology, 19(1):847-859.

[41] Tian, K.Q., Yu, Z.H., Feng, M., 2000. Paleogene Deep-Seated Hydrocarbon’s Geology and Exploration in Bohai Bay Basin. Petroleum Industry Press, Beijing, p.121 (in Chinese).

[42] Valbracht, P.J., Honda, M., Matsumoto, T., Mattielli, N., McDougall, I., Ragettli, R., Weis, D., 1996. Helium, neon and argon isotope systematics in Kerguelen ultramafic xenoliths: implications for mantle source signatures. Earth and Planetary Science Letters, 138(1-4):29-38.

[43] Wang, T.F., 1984. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China. Journal of Volcanology and Geothermal Research, 22(3-4):287-289.

[44] Wang, X.B., 1989. Geochemistry and Cosmochemistry of Rare Gas Isotope. Science Press, Beijing, p.7-22 (in Chinese).

[45] Xiao, X.M., Liu, Z.F., Liu, D.H., Mi, J.K., Sheng, J.G., Song, Z.G., 2002. Determining natural gas accumulation period by fluid inclusions in reservoir. Chinese Science Bulletin, 47(12):957-960.

[46] Xu, Y.C., 1997. Helium isotope distribution of natural gases and its structural setting. Earth Science Frontiers (China University of Geoscience, Beijing), 4(3-4):185-190 (in Chinese).

[47] Xu, Y.C., Shen, P., Liu, W.H., 1998. Noble Gas Geochemistry of Natural Gas. Science Press, Beijing, p.23-25 (in Chinese).

[48] Zhu, Y.M., Qin, Y., 2001. Hydrocarbon-generation evolution of Paleozoic source rocks in the Konggu-3 well in Huanghua Depression. Acta Petrolei Sinica, 22(6):30-33 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE