Full Text:   <1724>

CLC number: TB114.3; O224; O211.6

On-line Access: 

Received: 2007-02-13

Revision Accepted: 2007-06-17

Crosschecked: 0000-00-00

Cited: 0

Clicked: 3420

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2007 Vol.8 No.9 P.1443~1451

http://doi.org/10.1631/jzus.2007.A1443


Performance of the geometric approach to fault detection and isolation in SISO, MISO, SIMO and MIMO systems


Author(s):  RAHIMI N., SADEGHI M. H., MAHJOOB M. J.

Affiliation(s):  Mechanical Engineering Department, University of Tabriz, Tabriz 5166614766, Iran; more

Corresponding email(s):   nrahimi@ihu.ac.ir

Key Words:  Fault detection and isolation (FDI), Multivariate systems, Parametric system identification, Linear regression, Distance functions


RAHIMI N., SADEGHI M. H., MAHJOOB M. J.. Performance of the geometric approach to fault detection and isolation in SISO, MISO, SIMO and MIMO systems[J]. Journal of Zhejiang University Science A, 2007, 8(9): 1443~1451.

@article{title="Performance of the geometric approach to fault detection and isolation in SISO, MISO, SIMO and MIMO systems",
author="RAHIMI N., SADEGHI M. H., MAHJOOB M. J.",
journal="Journal of Zhejiang University Science A",
volume="8",
number="9",
pages="1443~1451",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1443"
}

%0 Journal Article
%T Performance of the geometric approach to fault detection and isolation in SISO, MISO, SIMO and MIMO systems
%A RAHIMI N.
%A SADEGHI M. H.
%A MAHJOOB M. J.
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 9
%P 1443~1451
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1443

TY - JOUR
T1 - Performance of the geometric approach to fault detection and isolation in SISO, MISO, SIMO and MIMO systems
A1 - RAHIMI N.
A1 - SADEGHI M. H.
A1 - MAHJOOB M. J.
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 9
SP - 1443
EP - 1451
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1443


Abstract: 
In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multiple-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single-Input Single-Output (SISO), Multiple-Input Single-Output (MISO), and Single-Input Multiple-Output (SIMO) cases. A proper distance function based on parameters obtained from parametric system identification method is used in the geometric approach. ARX (Auto Regressive with eXogenous input) and VARX (Vector ARX) models with 12 parameters are used in all of the above-mentioned models. The obtained results reveal that by increasing the number of inputs, the classification errors reduce, even in the case of applying only one of the inputs in the computations. Furthermore, increasing the number of measured outputs in the FDI scheme results in decreasing classification errors. Also, it is shown that by using probabilistic space in the distance function, fault diagnosis scheme has better performance in comparison with the deterministic one.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Bachschmid, N., Pennacchi, T., Venia, A., 2002. Identification of multiple faults in rotor systems. Journal of Sound and Vibration, 254(2):327-366.

[2] Basseville, M.A., Benveniste, A., Moustakides, G.V., Rougee, A., 1986. Detection and diagnosis of abrupt changes in modal characteristics of nonstationary digital signals. IEEE Transaction on Information Theory, 32(3):412-417.

[3] Boukhris, A., Giuliani, S., Mourot, G., 2001. Rainfall-runoff multi-modelling for sensor fault diagnosis. Control Engineering Practice, 9(6):659-671.

[4] Broan, R.B., 1974. A Nonlinear Voter-estimator for Redundant Systems. Proceedings of IEEE Conf. on Decision and Control, Phoenix, AZ, p.743-748.

[5] De Persis, C., Isidori, A., 2001. A geometric approach to nonlinear fault detection and isolation. IEEE Transactions on Automatic Control, 46(6):853-865.

[6] Frisk, E., Aslund, J., 2005. Lowering orders of derivatives in non-linear residual generation using realization theory. Automatica, 41(10):1799-1807.

[7] Gersch, W., Brotherton, T., Braun, S., 1983. Nearest neighbor time series analysis classification of faults in rotating machinery. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, 105:178-184.

[8] Gilmore, J., McKern, R., 1970. A Redundant Strap-down Inertial Systems Mechanization. AIAA Guidance, Control, and Flight Mechanics Conf., Santa Barbara, CA, p.17-19.

[9] Hamelin, F., Defranoux, C., Rambeaux, F., 1999. A Geometric Approach for Fault Detection and Isolation in Dynamic Uncertain Systems. Proceeding of 38th IEEE Conf. Decision and Control, Phoenix, Arizona, USA, 3:3122-3127.

[10] Isermann, R., 1993. Fault diagnosis of machines via parameter estimation and knowledge processing. Automatica, 29(4):815-835.

[11] Kashyap, R.L., Rao, A.R., 1976. Dynamic Stochastic Models from Empirical Data. Academic Press.

[12] Ljung, L., 1999. System Identification Theory for the User (2nd Ed.). Prentice Hall.

[13] Luenberger, D., 1986. Optimization by Vector Space Method. Wiley.

[14] Myers, R.H., 1990. Classical and Modern Regression with Applications (2nd Ed.). Advanced Series in Statistics and Decision Science. Duxbury Press.

[15] Park, J., 1991. A Unified Approach to Fault Detection and Isolation in Dynamical System. Ph.D Thesis, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI.

[16] Sadeghi, M.H., Fassois, S.D., 1991. A Stochastic Approach to the Failure Detection and Isolation Problem for Automobile Hydraulic Active Suspension System. Technical Report submitted to the Ford Motor Company, Dearborn, MI.

[17] Sadeghi, M.H., Fassois, S.D., 1997. Geometric approach to nondestructive identification of faults in stochastic structural systems. AIAA Journal, 35:700-705.

[18] Sakellariou, J.S., Fassois, S.D., 2000. Parametric Output Error Based Identification and Fault Detection in Structures under Earthquake Excitation. European COST F3 Conference on System Identification and Structural Health Monitoring, Madrid, Spain, p.323-332.

[19] Soderstrom, T., Stoica, P., 1989. System Identification. Prentice Hall.

[20] Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R., 2003. A Review of Structural Health Monitoring Literature: 1996-2001. Los Alamos National Laboratory Report, LA-13976-MS.

[21] Strang, G., 1986. Introduction to Applied Mathematics. Wellsley, Mass., Wellsley-Cambridge Press.

[22] Szaszi, I., Kulcsar, B., Balas, G.J., Bokor, J., 2002. Design of FDI Filter for an Aircraft Control System. Proceeding of American Control Conf., 5:4232-4237.

[23] Tokatli, F., Cinar, A., Schlesser, J.E., 2005. HACCP with multivariate process monitoring and fault diagnosis techniques: Application to a food pasteurization process. Food Control, 16(5):411-422.

[24] Willsky, A.S., 1976. A survey of design methods for failure detection in dynamic system. Automatica, 12(6):601-611.

[25] Zimmerman, D.C., Lyde, T.L., 1993. Sensor failure detection and isolation in flexible structure using system realization redundancy. AIAA Journal of Guidance, Control, and Dynamics, 16:490-497.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE