CLC number: TB52+9
On-line Access:
Received: 2007-11-22
Revision Accepted: 2008-02-04
Crosschecked: 0000-00-00
Cited: 2
Clicked: 5741
Qi ZHANG, Pei-wen QUE, Wei LIANG. Applying sub-band energy extraction to noise cancellation of ultrasonic NDT signal[J]. Journal of Zhejiang University Science A, 2008, 9(8): 1134-1140.
@article{title="Applying sub-band energy extraction to noise cancellation of ultrasonic NDT signal",
author="Qi ZHANG, Pei-wen QUE, Wei LIANG",
journal="Journal of Zhejiang University Science A",
volume="9",
number="8",
pages="1134-1140",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0720072"
}
%0 Journal Article
%T Applying sub-band energy extraction to noise cancellation of ultrasonic NDT signal
%A Qi ZHANG
%A Pei-wen QUE
%A Wei LIANG
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 8
%P 1134-1140
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0720072
TY - JOUR
T1 - Applying sub-band energy extraction to noise cancellation of ultrasonic NDT signal
A1 - Qi ZHANG
A1 - Pei-wen QUE
A1 - Wei LIANG
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 8
SP - 1134
EP - 1140
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0720072
Abstract: In ultrasonic non-destructive tests, the echo signal at the flaw is highly complex due to the interference of multiple echoes with random amplitudes and phases, and is disturbed by all kinds of noises, such as thermal noise, digitalization noise, and structure noise. In this paper, the ultrasonic signal was decomposed by empirical mode decomposition (EMD) to obtain the intrinsic mode function (IMF) components according to ultrasonic defect echo signals occuring at the corresponding time, and the energy of the ultrasonic signal was concentrated. The IMF component selection criterion based on sub-band energy extraction was proposed to extract the ultrasonic signal component accurately and automatically from IMF components. When the selected IMF components were filtered by a band pass filter, the signal-to-noise ratio (SNR) was enhanced greatly.
[1] Andrade, A.O., Nasuto, S., Kyberd, P., Sweeney-Reed, C.M., van Kanijn, F.R., 2006. EMG signal filtering based on empirical mode decomposition. Biomed. Signal Process. Control, 1(1):44-55.
[2] Balocchi, R., Menicucci, D., Santarcangelo, E., 2004. Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition. Chaos Solit. Fract., 20(1):171-177.
[3] Bilgutay, N.M., Murthy, R., Bencharit, U., Saniie, J., 1990. Spatial processing for coherent noise reduction in ultrasonic imaging. J. Acoust. Soc. Am., 87(2):728-736.
[4] Bouzid, A., Ellouze, N., 2004. Empirical Mode Decomposition of Voiced Speech Signal. Proc. First Int. Symp. on Control, Communications and Signal Processing, Hammamet, 1:603-606.
[5] Demirli, R., Saniie, J., 2001. Model-based estimation of ultrasonic echoes, part I: analysis and algorithms. IEEE Trans. on Ultrason. Ferroelectr. Freq. Control, 48(3):787-802.
[6] Flandrin, P., Rilling, G., Goncalves, P., 2004. Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett., 11(2):112-114.
[7] Gustafsson, M.G., Stepinski, T., 1993. Split spectrum algorithms rely on instantaneous phase information—a geometrical approach. IEEE Trans. on Ultrason. Ferroelectr. Freq. Control, 40(6):659-665.
[8] Huang, H., Pan, J.Q., 2006. Speech pitch determination based on Hilbert-Huang transform. Signal Processing, 86(4):792-803.
[9] Huang, N.E., Zheng, S., Steven, R., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A, 454:903-995.
[10] Kim, J., Udpa, L., Udpa, S., 2001. Multi-stage adaptive noise cancellation techniques for ultrasonic NDE. NDT & E Int., 34(5):319-328.
[11] Lazaro, J.C., San Emeterio, J.L., Ramos, A., 2002. Noise Reduction in Ultrasonic NDT Using Discrete Wavelet Transform Processing. IEEE Ultrasonics Symp., Munich, 1:777-780.
[12] Liu, B., Riemenschneider, S., Xu, Y., 2006. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum. Mech. Syst. Signal Process., 20(3):718-734.
[13] Mao, Y.M., Que, P.W., 2006. Application of Hilbert-Huang signal processing to ultrasonic non-destructive testing of oil pipelines. J. Zhejiang Univ. Sci. A, 7(2):130-134.
Open peer comments: Debate/Discuss/Question/Opinion
<1>