CLC number: TP183; R741.04
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-08-14
Cited: 5
Clicked: 6157
Yusely RUIZ, Guang LI, Walter J. FREEMAN, Eduardo GONZALEZ. Detecting stable phase structures in EEG signals to classify brain activity amplitude patterns[J]. Journal of Zhejiang University Science A, 2009, 10(10): 1483-1491.
@article{title="Detecting stable phase structures in EEG signals to classify brain activity amplitude patterns",
author="Yusely RUIZ, Guang LI, Walter J. FREEMAN, Eduardo GONZALEZ",
journal="Journal of Zhejiang University Science A",
volume="10",
number="10",
pages="1483-1491",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820690"
}
%0 Journal Article
%T Detecting stable phase structures in EEG signals to classify brain activity amplitude patterns
%A Yusely RUIZ
%A Guang LI
%A Walter J. FREEMAN
%A Eduardo GONZALEZ
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 10
%P 1483-1491
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820690
TY - JOUR
T1 - Detecting stable phase structures in EEG signals to classify brain activity amplitude patterns
A1 - Yusely RUIZ
A1 - Guang LI
A1 - Walter J. FREEMAN
A1 - Eduardo GONZALEZ
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 10
SP - 1483
EP - 1491
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820690
Abstract: Obtaining an electrocorticograms (ECoG) signal requires an invasive procedure in which brain activity is recorded from the cortical surface. In contrast, obtaining electroencephalograms (EEG) recordings requires the non-invasive procedure of recording the brain activity from the scalp surface, which allows EEG recordings to be performed more easily on healthy humans. In this work, a technique previously used to study spatial-temporal patterns of brain activity on animal ECoG was adapted for use on EEG. The main issues are centered on solving the problems introduced by the increment on the interelectrode distance and the procedure to detect stable frames. The results showed that spatial patterns of beta and gamma activity can also be extracted from the EEG signal by using stable frames as time markers for feature extraction. This adapted technique makes it possible to take advantage of the cognitive and phenomenological awareness of a normal healthy subject.
[1] AEA (American Electroencephalographic Association), 1990. Standard Electrode Position Nomenclature.
[2] Barlow, J.S., 1993. The Electroencephalogram: Its Patterns and Origins. MIT Press, Cambridge, MA.
[3] Barrie, J.M., Freeman, W.J., Lenhart, M.D., 1996. Spatiotemporal analysis of prepyriform, visual, auditory, and somesthetic surface EEGs in trained rabbits. J. Neurophysiol., 76(1):520-539.
[4] Begleiter, H., Porjesz, B., Wang, W., 1995. Event-related brain potentials differentiate priming and recognition to familiar and unfamiliar faces. Electroencephalogr. Clin. Neurophysiol., 94(1):41-49.
[5] Duda, R.O., Hart, P.E., Stork, D.G., 2000. Pattern Classification. John Wiley & Sons, New York.
[6] Fingelkurts, A.A., Fingelkurts, A.A., 2001. Operational architectonics of the human brain biopotential field: towards solving the mind-brain problem. Brain & Mind, 2(3):261-296.
[7] Fingelkurts, A.A., Fingelkurts, A.A., 2004. Making complexity simpler: multivariability and metastability in the brain. Int. J. Neurosci., 114(7):843-862.
[8] Freeman, W.J., 2003. A neurobiological theory of meaning in perception: Part II. Spatial patterns of phase in gamma EEGs from primary sensory cortices reveal the dynamics of mesoscopic wave packets. Int. J. Bifurc. Chaos, 13(9):2513-2535.
[9] Freeman, W.J., 2004a. Origin, structure, and role of background EEG activity: Part 1. Analytic amplitude. Clin. Neurophysiol., 115(9):2077-2088.
[10] Freeman, W.J., 2004b. Origin, structure, and role of background EEG activity: Part 2. Analytic phase. Clin. Neurophysiol., 115(9):2089-2107.
[11] Freeman, W.J., 2005. Origin, structure, and role of background EEG activity: Part 3. Neural frame classification. Clin. Neurophysiol., 116(5):1118-1129.
[12] Freeman, W.J., 2006. A cinematographic hypothesis of cortical dynamics in perception. Int. J. Psychophysiol., 60(2):149-161.
[13] Freeman, W.J., 2007a. Definitions of state variables and state space for brain-computer interface: Part 2. Extraction and classification of features vectors. Cogn. Neurodynam., 1(2):85-96.
[14] Freeman, W.J., 2007b. Proposed Cortical “Shutter” Mechanism in Cinematographic Perception. In: Perlovsky, L.I., Kozma, R. (Eds.), Neurodynamics of Cognition and Consciousness, p.11-38.
[15] Freeman, W.J., 2007c. Definitions of state variables and state space for brain-computer interface: Part 1. Multiple hierarchical levels of brain function. Cogn. Neurodynam., 1(1):3-14.
[16] Freeman, W.J., Barrie, J.M., 2000. Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. J. Neurophysiol., 84(3):1266-1278.
[17] Freeman, W.J., Burke, B.C., 2003. A neurobiological theory of meaning in perception: Part IV. Multicortical patterns of amplitude modulation in gamma EEG. Int. J. Bifurc. Chaos, 13(10):2857-2866.
[18] Freeman, W.J., Rogers, L.J., 2003. A neurobiological theory of meaning in perception: Part V. Multicortical patterns of phase modulation in gamma EEG. Int. J. Bifurc. Chaos, 13(10):2867-2887.
[19] Freeman, W.J., van Dijk, B.W., 1987. Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey. Brain Res., 422(2):267-276.
[20] Freeman, W.J., Burke, B.C., Holmes, M.D., 2003. Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates. Hum. Brain Map., 19(4):248-272.
[21] Freeman, W.J., Holmes, M.D., West, G.A., Vanhatalo, S., 2006a. Dynamics of human neocortex that optimizes its stability and flexibility. Int. J. Intell. Syst., 21(9):881-901.
[22] Freeman, W.J., Holmes, M.D., West, G.A., Vanhatalo, S., 2006b. Fine spatiotemporal structure of phase in human intracranial EEG. Clin. Neurophysiol., 117(6):1228-1243.
[23] Hinterberger, T., Kübler, A., Kaiser, J., Neumann, N., Birbaumer, N., 2003. A brain-computer interface (BCI) for the locked-in: comparison of different EEG classifications for the thought translation device. Clin. Neurophysiol., 114(3):416-425.
[24] Ingber, L., 1999. EEG Database. Available from http://kdd.ics.uci.edu/databases/eeg/eeg.html
[25] Kozma, R., Freeman, W.J., 2002. Classification of EEG patterns using nonlinear dynamics and identifying chaotic phase transitions. Neurocomputing, 44-46(1-4):1107-1112.
[26] Lehmann, D., Strik, W.K., Henggeler, B., Koenig, T., Koukkou, M., 1998. Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int. J. Psychophysiol., 29(1):1-11.
[27] Niedermeyer, E., Lopes da Silva, F. (Eds.), 2005. Electroencephalography: Basic Principles, Clinical Applications and Related Fields. Lippincott Williams & Wilkins, Baltimore.
[28] Ohl, F.W., Schulze, H., Scheich, H., Freeman, W.J., 2000. Spatial representation of frequency-modulated tones in gerbil auditory cortex revealed by epidural electrocorticography. J. Physiol.-Paris, 94(5-6):549-554.
[29] Ruiz, Y., Li, G.., Freeman, W.J., Moreira, E.G., 2007. A New Approach to Detect Stable Phase Structure in High Density EEG Signals. Proc. 1st Int. Conf. on Cognitive Neurodynamics, p.741-745.
[30] Sammon, J.W., 1969. A nonlinear mapping for data structure analysis. IEEE Trans. Comput., 18(5):401-409.
[31] Snodgrass, J.G., Vanderwart, M., 1980. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J. Exp. Psychol.: Hum. Learn. Mem., 6(2):174-215.
[32] Stam, C.J., Breakspear, M., Cappellen, A., Dijk, B.W., 2003. Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects. Hum. Brain Map., 19(2):63-78.
[33] Zhang, X.L., Begleiter, H., Porjesz, B., Wang, W., Litke, A., 1995. Event related potentials during object recognition tasks. Brain Res. Bull., 38(6):531-538.
[34] Zhang, X.L., Begleiter, H., Porjesz, B., Litke, A., 1997. Visual object priming differs from visual word priming: an ERP study. Electroencephalogr. Clin. Neurophysiol., 102(3):200-215.
Open peer comments: Debate/Discuss/Question/Opinion
<1>