CLC number: X511
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-07-08
Cited: 7
Clicked: 6862
Shu-dong JIANG, Zhi-hua WANG, Jun-hu ZHOU, Zheng-cheng WEN, Ke-fa CEN. A quantum chemistry study on reaction mechanisms of SO2 with O3 and H2O2[J]. Journal of Zhejiang University Science A, 2009, 10(9): 1327-1333.
@article{title="A quantum chemistry study on reaction mechanisms of SO2 with O3 and H2O2",
author="Shu-dong JIANG, Zhi-hua WANG, Jun-hu ZHOU, Zheng-cheng WEN, Ke-fa CEN",
journal="Journal of Zhejiang University Science A",
volume="10",
number="9",
pages="1327-1333",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820787"
}
%0 Journal Article
%T A quantum chemistry study on reaction mechanisms of SO2 with O3 and H2O2
%A Shu-dong JIANG
%A Zhi-hua WANG
%A Jun-hu ZHOU
%A Zheng-cheng WEN
%A Ke-fa CEN
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 9
%P 1327-1333
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820787
TY - JOUR
T1 - A quantum chemistry study on reaction mechanisms of SO2 with O3 and H2O2
A1 - Shu-dong JIANG
A1 - Zhi-hua WANG
A1 - Jun-hu ZHOU
A1 - Zheng-cheng WEN
A1 - Ke-fa CEN
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 9
SP - 1327
EP - 1333
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820787
Abstract: reaction mechanisms of SO2 with O3 and H2O2 were investigated using quantum chemistry ab initio methods. Structures of all reactants, products, and transition states were optimized at the B3LYP/6-311G+(3df,2p) level, and energy calculations were made at the G2M level. SO2 reactions with O3 and H2O2 occurred by O-abstraction and OH-abstraction by SO2, respectively, at length forming SO3+O2 (3Σg−) and H2SO4. For SO2+O3 reactions the barrier height was predicted to be 9.68 kcal/mol with a rate constant of 3.61×10−23 cm3/(molecule·s) at 300 K, which is below the experimental upper limit. The rate constant predicted for this reaction accords well with the one provided by National Institute for Standards and Technology (NIST) in 250~500 K. For SO2+H2O2 reactions the barrier height was predicted to be 62.39 kcal/mol with a rate constant of 2.48×10−61 cm3/(molecule·s) at 300 K.
[1] Albrecht, M., Gossage, R.A., Frey, U., Ehlers, A.W., Baerends, E.J., Merbach, A.E., van Koten, G., 2001. Mechanistic aspects of the reversible binding of SO2 on arylplatinum complexes: experimental and ab initio studies. Inorganic Chemistry, 40(5):850-855.
[2] Barrow, G.M., 1966. Physical Chemistry. McGraw-Hill, New York.
[3] Becke, A.D., 1992a. Density-functional thermochemistry. I. the effect of the exchange-only gradient correction. Journal of Chemical Physics, 96(3):2155-2160.
[4] Becke, A.D., 1992b. Density-functional thermochemistry. II. the effect of the Perdew-wang generalized-gradient correlation correction. Journal of Chemical Physics, 97(12):9173-9177.
[5] Becke, A.D., 1993. Density-functional thermochemistry. III. the role of exact exchange. Journal of Chemical Physics, 98(7):5648-5852.
[6] Berthe-Gaujac, N., Jean, Y., Volatron, F., 1995. Ab initio study of the (SO2)(SO2−) dimer: structures involving a two-electron S—O bond. Chemical Physics Letters, 243(1-2):165-170.
[7] Bishenden, E., Donaldson, D.J., 1998. Ab initio study of SO2+H2O. Journal of Physical Chemistry A, 102(24):4638-4642.
[8] Chen, T.S., Plummer, P.L.M., 1985. Ab initio mo investigation of the gas-phase reaction SO3+H2O→H2SO4. Journal of Physical Chemistry A, 89(17):3689-3693.
[9] Choo, J., Kimb, S., Kwon, Y., 2002. Theoretical molecular structures for partially bonded complexes of trimethylamine with SO2 and SO3: ab initio and density functional. Journal of Molecular Structure: Theochem, 594(3):147-156.
[10] Davis, D.D., Prusazcy, J., Dwyer, M., Klm, P., 1974. A stop-flow time-of-flight mass spectrometry kinetics study. reaction of ozone with nitrogen dioxide and sulfur dioxide. Journal of Physical Chemistry, 78(18):1775-1779.
[11] Eggleton, A.E.J., Cox, R.A., 1978. Homogeneous oxidation of sulphur compounds in the atmosphere. Atmospheric Environment (1967), 12(1-3):227-230.
[12] Fournier, R., DePristo, A.E., 1992. Predicted bond energies in peroxides and disulfides by density functional methods. Journal of Chemical Physics, 96(2):1183-1193.
[13] Friedlander, M.E., Howell, J.M., Sapse, A.M., 1983. SO2…HF. An ab initio study. Inorganic Chemistry, 22(1):100-103.
[14] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T., Kudin, K.N., Burant, J.C., et al., 2003. Gaussian 03. Gaussian, Inc., Pittsburgh, PA.
[15] Gonzalez, C., Schlegel, H.B., 1989. An improved algorithm for reaction path following. Journal of Chemical Physics, 90(4):2154-2161.
[16] Groves, C., Lewars, E., 2000. Dimers, trimers and oligomers of sulfur oxides: an ab initio and density functional study. Journal of Molecular Structure: Theochem, 530(3):265-279.
[17] Ignatov, S.K., 2004. Ab-initio and DFT study of the molecular mechanisms of SO3 and SOCl2 reactions with water in the gas phase. Journal of Physical Chemistry A, 108(16):3642-3649.
[18] Larson, L.J., Tao, F.M., 2001. Interactions and reactions of sulfur trioxide, water, and ammonia: an ab initio and density functional theory study. Journal of Physical Chemistry A, 105(17):4344-4350.
[19] Lee, C., Yang, W., Parr, R.G., 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2):785-789.
[20] Lu, X., Park, J., Lin, M.C., 2000. Gas phase reactions of HONO with NO2, O3, and HCl: ab initio and TST study. Journal of Physical Chemistry A, 104(38):8730-8738.
[21] Matsumura, K., Lovas, F.J., Suenram, R.D., 1989. The microwave spectrum and structure of the H2O—SO2 complex. Journal of Chemical Physics, 91(10):5887-5894.
[22] Mebel, A.M., Morokuma, K., Lin, M.C., 1995. Modification of the GAUSSIAN-2 theoretical model: the use of coupled-cluster energies density-functional geometries and frequencies. Journal of Chemical Physics, 103(17):7414-7421.
[23] Mok, Y.S., Lee, H.J., 2006. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique. Fuel Processing Technology, 87(7):591-597.
[24] Möller, D., 1980. Kinetic model of atmospheric SO2 oxidation based on published data. Atmospheric Environment (1967), 14(9):1067-1076.
[25] National Institute for Standards and Technology (NIST), 2008. Chemical Kinetics Database on the Web, Standard Reference Database 17. Available from: http://kinetics.nist.gov/kinetics/Detail?id=1997DEM/SAN1-266:385 [Accessed 2008-05-01]
[26] Natsheh, A.A., Nadykto, A.B., Mikkelsen, K.V., Yu, F., Ruuskanen, J., 2004. Sulfuric acid and sulfuric acid hydrates in the gas phase: a DFT investigation. Journal of Physical Chemistry A, 108(41):8914-8929.
[27] Peiró-García, J., Nebot-Gil, I., 2002. Ab initio study of the mechanism and thermochemistry of the atmospheric reaction NO+O3→NO2+O2. Journal of Physical Chemistry A, 106(43):10302-10310.
[28] Sander, S.P., Ravishankara, A.R., Fried, R.R., Golden, D.M., Kolb, C.E., Kurylo, M.J., Molina, M.J., Moortgat, G.K., Keller-Rudek, H., Finlayson-Pitts, B.J., et al., 2006. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation Number 15, 2:1-26. Available from: http://jpldataeval.jpl.nasa.gov/. JPL Publication [Accessed 2008-05]
[29] Tachikawa, H., Abe, S., Iyama, T., 2001. An ab initio MO study on the structures and electronic states of hydrogen-bonded O3—HF and SO2—HF Complexes. Inorganic Chemistry, 40(6):1167-1171.
[30] Urone, P., Schroeder, W.H., 1969. SO2 in the atmosphere: a wealth of monitoring data, but few reaction rate studies. Environmental Science & Technology, 3(5):436-445.
[31] Wang, Z.H., Zhou, J.H., Zhu, Y.Q., Wen, Z.C., Liu, J.Z., Cen, K.F., 2007. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results. Fuel Processing Technology, 88(8):817-823.
[32] Zheng, C., Liu, J., Liu, Z., Xu, M., Liu, Y., 2005. Kinetic mechanism studies on reactions of mercury and oxidizing species in coal combustion. Fuel, 84(10):1215-1220.
Open peer comments: Debate/Discuss/Question/Opinion
<1>