Full Text:   <3574>

CLC number: V448.22

On-line Access: 2010-06-02

Received: 2009-11-14

Revision Accepted: 2010-03-08

Crosschecked: 2010-04-28

Cited: 5

Clicked: 6219

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2010 Vol.11 No.6 P.455-464


Magnetometer-only linear attitude estimation for bias momentum pico-satellite

Author(s):  Ke Han, Hao Wang, Zhong-he Jin

Affiliation(s):  Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   roger@zju.edu.cn

Key Words:  Pico-satellite, Attitude estimation, Bias momentum, Magnetometer, Kalman filter (KF)

Share this article to: More <<< Previous Article|

Ke Han, Hao Wang, Zhong-he Jin. Magnetometer-only linear attitude estimation for bias momentum pico-satellite[J]. Journal of Zhejiang University Science A, 2010, 11(6): 455-464.

@article{title="Magnetometer-only linear attitude estimation for bias momentum pico-satellite",
author="Ke Han, Hao Wang, Zhong-he Jin",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Magnetometer-only linear attitude estimation for bias momentum pico-satellite
%A Ke Han
%A Hao Wang
%A Zhong-he Jin
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 6
%P 455-464
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0900725

T1 - Magnetometer-only linear attitude estimation for bias momentum pico-satellite
A1 - Ke Han
A1 - Hao Wang
A1 - Zhong-he Jin
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 6
SP - 455
EP - 464
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0900725

Satellite attitude information is essential for pico-satellite applications requiring light-weight, low-power, and fast-computation characteristics. The objective of this study is to provide a magnetometer-only attitude estimation method for a low-altitude Earth orbit, bias momentum pico-satellite. Based on two assumptions, the spacecraft spherical symmetry and damping of body rates, a linear kinematics model of a bias momentum satellite’s pitch axis is derived, and the linear estimation algorithm is developed. The algorithm combines the linear kalman filter (KF) with the classic three-axis attitude determination method (TRIAD). KF is used to estimate satellite’s pitch axis orientation, while TRIAD is used to obtain information concerning the satellite’s three-axis attitude. Simulation tests confirmed that the algorithm is suited to the time-varying model errors resulting from both assumptions. The estimate result keeps tracking satellite attitude motion during all damping, stable, and free rotating control stages. Compared with nonlinear algorithms, such as extended Kalman filer (EKF) and square root unscented Kalman filer (SRUKF), the algorithm presented here has an almost equal performance in terms of convergence time and estimation accuracy, while the consumption of computing resources is much lower.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Appel, P., 2005. Attitude estimation from magnetometer and earth-albedo-corrected coarse sun sensor measurements. Acta Astronautica, 56(1-2):115-126.

[2]Bang, H., Kim, J.A., Kim, M., 1997. Optimal reorientation maneuver of bias momentum spacecraft. Journal of Guidance, Control and Dynamics, 20(6):1076-1082.

[3]Challa, M., Natanson, G., Ottenstein, N., 2000. Magnetometer-only Attitude and Rate Estimates for Spinning Spacecraft. Proceedings of the AIAA/AAS Astrodynamics Specialists Conference, Denver, CO, USA, p.311-321.

[4]Côté, J., Lafontaine, J., 2008. Magnetic-only Orbit and Attitude Estimation Using the Square-root Unscented Kalman Filter Application to the PROBA-2 Spacecraft, Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, USA.

[5]Crassidis, J.L., Lai, K.L., Harman, R.R., Real-time attitude-independent three-axis magnetometer calibration. Journal of Guidance, Control, and Dynamics, 28(1):115-120.

[6]Eagleson, S., 2007. Attitude Determination and Control, Detailed Design, Test, and Implementation for CanX-2 and Preliminary Design for CanX-3 and CanX-45. MS Thesis, University of Toronto, Toronto, Canada.

[7]Funase, R., Takei, E., Nakamura, Y., Nagai, M., Enokuchi, A., Chen, Y.L., Nakada, K., Nojiri, Y., Sasaki, F., Funane, F., et al., 2007. Technology demonstration on University of Tokyo’s pico-satellite “XI-V” and its effective operation result using ground station network. Acta Astronautica, 61(7-8):707-711.

[8]Harmann, R.J., Verhoeven, C.J.M., Bonnema, A.R., 2005. Nano-satellites, a Fast Way to Pre-qualify New Micro-Technology. International Conference on MEMS, NANO and Smart Systems, Banff, Alberta, Canada, p.263-264.

[9]Hart, C., 2009. Satellite Attitude Determination Using Magnetometer Data Only. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, USA.

[10]Kaplan, M.H., 1976. Modern Spacecraft Dynamics and Control. John Wiley & Sons, New York, p.251.

[11]Lerner, G.M., 1978. Three-axis Attitude Determination, Spacecraft Attitude Determination and Control. Wertz, J.R. (Ed.), D. Reidel, Dordrecht, the Netherlands, p.420-428.

[12]Martinelli, M.I., Sánchez Peña, R.S., 2005. Passive 3 axis attitude control of MSU-1 pico-satellite. Acta Astronautica, 56(5):507-517.

[13]Meng, T., Wang, H., Jin, Z.H., Han, K., 2009. Attitude stabilization of a pico-satellite by momentum wheel and magnetic coils. Journal of Zhejiang University-SCIENCE A, 10(11):1617-1623.

[14]Mimasu, Y., van der Ha, J.C., Narumi, T., 2008. Attitude Determination by Magnetometer and Gyros during Eclipse. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, USA.

[15]Nugent, R., Munakata, R., Chin, A., Coelho, R., Puig-Suari, J., 2008. CubeSat: The Pico-Satellite Standard for Research and Education, AIAA SPACE Conference and Exposition, San Diego, California, USA.

[16]Psiaki, M.L., 2004. Global magnetometer-based spacecraft attitude and rate estimation. Journal of Guidance, Control, and Dynamics, 27(2):240-250.

[17]Psiaki, M.L., Oshman, Y., 2003. Spacecraft attitude rate estimation from geomagnetic field measurement. Journal of Guidance, Control, and Dynamics, 26(2):244-252.

[18]Psiaki, M.L., Martel, F., Pal, P.K., 1990. Three-axis attitude determination via Kalman filtering of magnetometer data. Journal of Guidance, Control, and Dynamics, 13(3):506-514.

[19]Rankin, D.J.P., 2005. Integration, Testing, and Operations of CanX-1 Picosatellite and the Design of the CanX-2 Attitude Determination and Control System. MS Thesis, University of Toronto, Toronto, Canada.

[20]Roh, K.M., Park, S.Y., Choi, K.H., 2007. Orbit determination using the geomagnetic field measurement via the unscented Kalman filter. Journal of Spacecraft and Rockets, 44(1):246-253.

[21]Silani, E., Lovera, M., 2005. Magnetic spacecraft attitude control: a survey and some new results. Control Engineering Practice, 13(3):357-371.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE