Full Text:   <1539>

Summary:  <459>

CLC number: TU473.1

On-line Access: 2015-02-03

Received: 2014-04-07

Revision Accepted: 2014-08-12

Crosschecked: 2015-01-12

Cited: 4

Clicked: 1979

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Lei Su

http://orcid.org/0000-0002-9312-4170

Liang Tang

http://orcid.org/0000-0003-0030-1850

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.2 P.93-104

10.1631/jzus.A1400093


Responses of reinforced concrete pile group in two-layered liquefied soils: shake-table investigations


Author(s):  Lei Su, Liang Tang, Xian-zhang Ling, Neng-pan Ju, Xia Gao

Affiliation(s):  School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China; more

Corresponding email(s):   hit_tl@163.com

Key Words:  Liquefaction, Dynamic behavior, Pile group effect, Pile group, Shake-table experiment


Lei Su, Liang Tang, Xian-zhang Ling, Neng-pan Ju, Xia Gao. Responses of reinforced concrete pile group in two-layered liquefied soils: shake-table investigations[J]. Journal of Zhejiang University Science A, 2015, 16(2): 93-104.

@article{title="Responses of reinforced concrete pile group in two-layered liquefied soils: shake-table investigations",
author="Lei Su, Liang Tang, Xian-zhang Ling, Neng-pan Ju, Xia Gao",
journal="Journal of Zhejiang University Science A",
volume="16",
number="2",
pages="93-104",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400093"
}

%0 Journal Article
%T Responses of reinforced concrete pile group in two-layered liquefied soils: shake-table investigations
%A Lei Su
%A Liang Tang
%A Xian-zhang Ling
%A Neng-pan Ju
%A Xia Gao
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 2
%P 93-104
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer

TY - JOUR
T1 - Responses of reinforced concrete pile group in two-layered liquefied soils: shake-table investigations
A1 - Lei Su
A1 - Liang Tang
A1 - Xian-zhang Ling
A1 - Neng-pan Ju
A1 - Xia Gao
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 2
SP - 93
EP - 104
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -


Abstract: 
During earthquakes, the response of pile foundations in liquefiable sand reinforced by densification techniques is still a very complex dynamic soil-structure interaction problem. Two shake-table experiments were conducted to investigate the behavior of a reinforced concrete (RC) low-cap pile group embedded in liquefiable soils. Discussion is focused on the behavior of soil-pile-superstructure systems prior to and during liquefaction of the medium-dense and dense sand stratums, which are involved in restoring force characteristics at the superstructure and pile group effect%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>pile group effect. The test results demonstrated a stiffness reduction and dependent nonlinear behavior appearing in the liquefied medium-dense sand; however, an overall stiffening response was observed in liquefied dense sand. The pile group effect%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>pile group effect seemed insignificant in liquefied medium-dense sand, but was very significant in the liquefied dense sand.

两层土液化场地混凝土群桩基础动力反应振动台试验研究

目的:探讨中密和密实砂液化场地混凝土低承台群桩和地基动力响应存在的差异性,并揭示引起这种差异性的原因,以期获得加密后砂土液化场地混凝土低承台群桩和地基动力反应的基本特征与规律。
创新点:1. 利用振动台试验,成功实施中密和密实砂液化场地低承台群桩基振动台试验;2. 基于试验结果,对比中密和密实砂层液化场地群桩和地基的动力响应规律,考察两种液化场地条件下群桩效应基本特征。
方法:1. 通过对比白噪声扫频,获得中密砂和密实砂层液化场地下体系模态参数的差异性(图2和表1);2. 通过对比砂层孔压、加速度和位移(图3-8),获得中密砂和密实砂液化场地动力反应显著的差异性;3. 基于上部结构和承台的位移与加速度,讨论中密砂和密实砂液化场地上部结构动力反应与回复力特性(图9和10);4. 基于桩上记录的应变时程,考虑桩的非线性,反算混凝土桩的弯矩时程,对比两类场地群桩弯矩存在的差异性,获得两类场地对群桩效应的影响效应 (图12-14)。
结论:1. 密实砂液化场地加速度在砂层液化后未出现弱化现象,表现出明显的循环流动性,密实砂液化场地比中密砂液化场地刚度更大;2. 上部结构动力响应与砂土密实状态密切相关;3. 中密砂液化场地桩的最大弯矩发生在土层分界处,而密实砂液化场地中桩的最大弯矩发生在桩头处;4. 群桩效应在密砂层中更显著,而在中密砂层并不显著。

关键词:液化;动力反应;群桩效应;中密砂;密砂;振动台试验

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdoun, T., 1997. Modeling of Seismically Induced Lateral Spreading of Multi-layered Soil and Its Effect on Pile Foundations. PhD Thesis, Rensselaer Polytechnic Institute, Troy, New York.

[2]Ashford, S.A., Juirnarongrit, T., Sugano, T., et al., 2006. Soil-pile response to blast-induced lateral spreading. I: field test. Journal of Geotechnical and Geoenvironmental Engineering, 132(2):152-162.

[3]Audemard M., F.A., Gómez, J.C., Tavera, H.J., et al., 2005. Soil liquefaction during the Arequipa Mw 8.4, June 23, 2001 earthquake, southern coastal Peru. Engineering Geology, 78(3-4):237-255.

[4]Brandenberg, S.J., Boulanger, R.W., Kutter, B.L., et al., 2005. Behavior of pile foundations in laterally spreading ground during centrifuge tests. Journal of Geotechnical and Geoenvironmental Engineering, 131(11):1378-1391.

[5]Chau, K.T., Shen, C.Y., Guo, X., 2009. Nonlinear seismic soil-pile-structure interactions: shaking table tests and FEM analyses. Soil Dynamics and Earthquake Engineering, 29(2):300-310.

[6]Cubrinovski, M., Uzuoka, R., Sugita, H., et al., 2008. Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamic analysis: shaking in the direction of ground flow. Soil Dynamics and Earthquake Engineering, 28(6):421-435.

[7]Dash, S.R., Govindaraju, L., Bhattacharya, S., 2009. A case study of damages of the Kandla Port and Customs Office tower supported on a mat-pile foundation in liquefied soils under the 2001 Bhuj earthquake. Soil Dynamics and Earthquake Engineering, 29(2):333-346.

[8]Gao, X., Ling, X.Z., Tang, L., et al., 2011. Soil-pile-bridge structure interaction in liquefying ground using shake table testing. Soil Dynamics and Earthquake Engineering, 31(7):1009-1017.

[9]González, L., Abdoun, T., Dobry, R., 2009. Effect of soil permeability on centrifuge modeling of pile response to lateral spreading. Journal of Geotechnical and Geoenvironmental Engineering, 135(1):62-73.

[10]Haigh, S.K., Madabhushi, S.P.G., 2011. Centrifuge modelling of pile-soil interaction in liquefiable slopes. Geomechanics and Engineering, 3(1):1-16.

[11]Kirupakaran, K., Cerato, A., Liu, C., et al., 2010. Simulation of a centrifuge model test of pile foundations in CDSM improved soft clays. Proceedings of GeoFlorida 2010: Advances in Analysis, Modeling & Design, West Palm Beach, Florida, USA, p.1583-1591.

[12]Knappett, J.A., Madabhushi, S.P.G., 2008. Liquefaction-induced settlement of pile groups in liquefiable and laterally spreading soils. Journal of Geotechnical and Geoenvironmental Engineering, 134(11):1609-1618.

[13]Kutter, B., Gajan, S., Manda, K., et al., 2004. Effects of layer thickness and density on settlement and lateral spreading. Journal of Geotechnical and Geoenvironmental Engineering, 130(6):603-614.

[14]Liu, C., Soltani, H., Pinilla, J., et al., 2011. Centrifuge investigation of seismic behavior of pile foundations in soft clays. Geo-Frontiers 2011: Advances in Geotechnical Engineering, Dallas, Texas, USA, p.585-594.

[15]Lombardi, D., Bhattacharya, S., 2014. Modal analysis of pile-supported structures during seismic liquefaction. Earthquake Engineering & Structural Dynamics, 43(1):119-138.

[16]Motamed, R., Towhata, I., 2010. Shaking table model tests on pile groups behind quay walls subjected to lateral spreading. Journal of Geotechnical and Geoenvironmental Engineering, 136(3):477-489.

[17]Palermo, A., Wotherspoon, L., Wood, J., et al., 2011. Lessons learnt from 2011 Christchurch earthquakes: analysis and assessment of bridges. Bulletin of the New Zealand Society for Earthquake Engineering, 44(4):319-333.

[18]Rollins, K.M., Gerber, T.M., Lane, J.D., et al., 2005. Lateral resistance of a full-scale pile group in liquefied sand. Journal of Geotechnical and Geoenvironmental Engineering, 131(1):115-125.

[19]Sonmez, B., Ulusay, R., Sonmez, H., 2008. A study on the identification of liquefaction-induced failures on ground surface based on the data from the 1999 Kocaeli and Chi-Chi earthquakes. Engineering Geology, 97(3-4):112-125.

[20]Sugimura, Y., Karkee, M.B., Mitsuji, K., 2004. An investigation on aspects of damage to precast concrete piles due to the 1995 Hyogoken-Nambu earthquake. Proceedings Third UJNR Workshop on Soil-structure Interaction, Menlo Park, California, USA, p.1-16.

[21]Tang, L., Ling, X.Z., Xu, P.J., et al., 2010. Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground. Earthquake Engineering and Engineering Vibration, 9(1):39-50.

[22]Tokimatsu, K., Suzuki, H., Sato, M., 2005. Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation. Soil Dynamics and Earthquake Engineering, 25(7-10):753-762.

[23]Uzuoka, R., Cubrinovski, M., Sugita, H., et al., 2008. Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamic analysis: shaking in the direction perpendicular to ground flow. Soil Dynamics and Earthquake Engineering, 28(6):436-452.

[24]Weaver, T.J., Ashford, S.A., Rollins, K.M., 2005. Response of 0.6 m cast-in-steel-shell pile in liquefied soil under lateral loading. Journal of Geotechnical and Geoenvironmental Engineering, 131(1):94-102.

[25]Wilson, D.W., 1998. Soil-pile-superstructure Interaction in Liquefying Sand and Soft Clay. PhD Thesis, University of California, Davis, California.

[26]Wilson, D.W., Boulanger, R.W., Kutter, B.L., 2000. Observed seismic lateral resistance of liquefying sand. Journal of Geotechnical and Geoenvironmental Engineering, 126(10):898-906.

[27]Wotherspoon, L.M., Pender, M.J., Orense, R.P., 2012. Relationship between observed liquefaction at Kaiapoi following the 2010 Darfield earthquake and former channels of the Waimakariri River. Engineering Geology, 125:45-55.

[28]Yao, S., Kobayashi, K., Yoshida, N., et al., 2004. Interactive behavior of soil-pile-superstructure system in transient state to liquefaction by means of large shake table tests. Soil Dynamics and Earthquake Engineering, 24(5):397-409.

[29]Yen, P., Chen, G., Buckle, I., et al., 2011. Bridge performance during the 2010 M8.8 Chile Earthquake. Structures Congress 2011, Las Vegas, Nevada, USA, p.1649-1659.

[30]Zong, Z.H., Zhou, R., Huang, X.Y., et al., 2014. Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part I: shaking table tests. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(5):351-363.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276/87952783; E-mail: jzus@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE