Full Text:   <785>

Summary:  <467>

CLC number: TH161

On-line Access: 2015-05-04

Received: 2014-07-30

Revision Accepted: 2015-03-15

Crosschecked: 2015-04-13

Cited: 0

Clicked: 1518

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Philipp Ziegler

http://orcid.org/0000-0002-3184-8974

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.5 P.361-370

10.1631/jzus.A1400237


A statistical method to identify main contributing tolerances in assemblability studies based on convex hull techniques


Author(s):  Philipp Ziegler, Sandro Wartzack

Affiliation(s):  Applied Analysis, University Rostock, Rostock 18057, Germany; more

Corresponding email(s):   philipp.ziegler@uni-rostock.de, wartzack@mfk.fau.de

Key Words:  Tolerance-Maps, Deviation domain, Assemblability, Sensitivity analysis, Statistical tolerance analysis


Philipp Ziegler, Sandro Wartzack. A statistical method to identify main contributing tolerances in assemblability studies based on convex hull techniques[J]. Journal of Zhejiang University Science A, 2015, 16(5): 361-370.

@article{title="A statistical method to identify main contributing tolerances in assemblability studies based on convex hull techniques",
author="Philipp Ziegler, Sandro Wartzack",
journal="Journal of Zhejiang University Science A",
volume="16",
number="5",
pages="361-370",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400237"
}

%0 Journal Article
%T A statistical method to identify main contributing tolerances in assemblability studies based on convex hull techniques
%A Philipp Ziegler
%A Sandro Wartzack
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 5
%P 361-370
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400237

TY - JOUR
T1 - A statistical method to identify main contributing tolerances in assemblability studies based on convex hull techniques
A1 - Philipp Ziegler
A1 - Sandro Wartzack
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 5
SP - 361
EP - 370
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400237


Abstract: 
In tolerancing, it is important to obtain recommendations from tolerance simulation results for optimizing tolerance values or the tolerance scheme. For this purpose, sensitivity analysis identifies the importance of single input parameters for received simulation results. This paper presents a method to adopt global sensitivity analysis methods on convex hull based tolerancing techniques, such as deviation domains. The focus of this paper lies on assemblability studies, in which the simulation output is a clearance. A method to estimate the influence of single part tolerances on the assembly clearance is proposed and performed for a pin-hole connection.

可装配性研究中基于凸包技术的关键公差识别统计方法

目的:从公差仿真结果中获得依据,以此优化公差值及公差方案,并通过灵敏度分析来验证单个参数的改变对所得仿真结果的影响。
创新点:1.根据公差技术,对凸包采取基于方差的全局敏感度分析;2.提出估计单个零件公差对装配间隙影响的方法。
方法:1.采用特征要素公差带凸包表示方法(图1);2.进行基于方差的全局敏感度分析(图2);3.通过灵敏度分析算法分析相对间隙和公差值的关系(图3、4和5);4.以销孔装配为例,验证该方法的可行性(图7、8和9)。
结论:1.销孔连接的实验证明了基于凸包技术的全局敏感度分析的必要性;2.基于凸包的灵敏度分析方法可用于分析单个零件公差对装配间隙的影响。

关键词:T-Map;公差域;可装配性;敏感度分析;统计公差分析

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ameta, G., Serge, S., Giordano, M., 2011. Comparison of spatial math models for tolerance analysis: tolerance maps, deviation domain, and TTRS. Journal of Computing and Information Science in Engineering, 11(2):021004.

[2]Beaucaire, P., Gayton, N., Duc, E., et al., 2013. Statistical tolerance analysis of over-constrained mechanisms with gaps using system reliability methods. Computer-Aided Design, 45(12):1547-1555.

[3]Borgonovo, E., 2007. A new uncertainty importance measure. Reliability Engineering & System Safety, 92(6):771-784.

[4]Cukier, R.I., Fortuin, C.M., Shuler, K.E., et al., 1973. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I theory. The Journal of Chemical Physics, 59(8):3873-3878.

[5]Davidson, J.K., Mujezinovic, A., Shah, J.J., 2002. A new mathematical model for geometric tolerances as applied to round faces. Journal of Mechanical Design, 124(4):609-622.

[6]Giordano, M., Pairel, E., Samper, S., 1999. Mathematical representation of tolerance zones. Proceedings of the 6th CIRP International Seminar on Computer-Aided Tolerancing, Enschede, the Netherlands.

[7]Khan, N.S., Shah, J.J., Davidson, J.K., 2010. Probability tolerance maps: a new statistical model for non linear tolerance analysis applied to rectangular faces. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p.529-548.

[8]Lemaitre, P., Sergienko, E., Arnaud, A., et al., 2015. Density modification based reliability sensitivity analysis. Journal of Statistical Computation and Simulation, 85(6):1200-1223.

[9]Mansuy, M., Giordano, M., Davidson, J.K., 2013. Comparison of two similar mathematical models for tolerance analysis: T-Map and deviation domain. Journal of Mechanical Design, 135(10):101008.

[10]McKay, M.D., Beckman, R.J., Conover, W.J., 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2):239-245.

[11]Roustant, O., 2013. Derivative-based global sensitivity measures for interactions. 7th International Conference on Sensitivity Analysis of Model Output, Nice, France.

[12]Roy, U., Li, B., 1999. Representation and interpretation of geometric tolerances for polyhedral objects. II. Size, orientation and position tolerances. Computer-Aided Design, 31(4):273-285.

[13]Saltelli, A., Ratto, M., Andres, T., et al., 2008. Global Sensitivity Analysis: the Primer. John Wiley & Sons, West Sussex, England.

[14]Schleich, B., Wartzack, S., 2013. How to determine the influence of geometric deviations on elastic deformations and the structural performance? Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(5):754-764.

[15]Sobol’, I.M., 1993. Sensitivity analysis for non-linear mathematical models. Mathematical Modelling and Computational Experiment, 1:407-414.

[16]Sobol’, I.M., 1994. A Primer for the Monte Carlo Method. CRC Press, Boca Rato, Florida, USA.

[17]Stuppy, J., Meerkamm, H., 2009. Tolerance analysis of a crank mechanism by taking into account different kinds of deviation. Proceedings of the 11th CIRP International Conference on Computer Aided Tolerancing, Annecy, France.

[18]Walter, M., Spruegel, T., Wartzack, S., 2013. Tolerance analysis of systems in motion taking into account interactions between deviations. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(5):709-719.

[19]Weibel, C., 2007. Minkowski Sums of Polytopes: Combinatorics and Computation. PhD Thesis, EPFL Lausanne, Suisse.

[20]Ziegler, P., Wartzack, S., 2013. A quality measure for comparing different feature deviations to perform sensitivity analysis in tolerancing. 7th International Conference on Sensitivity Analysis of Model Output, Nice, France.

[21]Ziegler, P., Wartzack, S., 2015. Sensitivity analysis of features in tolerancing based on constraint function level sets. Reliability Engineering & System Safety, 134:324-333.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE