Full Text:   <527>

Summary:  <166>

CLC number: TP24

On-line Access: 2018-07-04

Received: 2017-09-11

Revision Accepted: 2018-01-25

Crosschecked: 2018-06-11

Cited: 0

Clicked: 987

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hua-shan Liu

https://orcid.org/0000-0002-8209-4922

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2018 Vol.19 No.7 P.557-578

10.1631/jzus.A1700485


Bounded adaptive output feedback tracking control for flexible-joint robot manipulators


Author(s):  Hua-shan Liu, Yong Huang

Affiliation(s):  College of Information Science and Technology, Donghua University, Shanghai 201620, China

Corresponding email(s):   hs.liu@qq.com

Key Words:  Robot manipulator, Flexible joint, Output feedback control, Bounded control, Adaptive control


Share this article to: More <<< Previous Article|

Hua-shan Liu, Yong Huang. Bounded adaptive output feedback tracking control for flexible-joint robot manipulators[J]. Journal of Zhejiang University Science A, 2018, 19(7): 557-578.

@article{title="Bounded adaptive output feedback tracking control for flexible-joint robot manipulators",
author="Hua-shan Liu, Yong Huang",
journal="Journal of Zhejiang University Science A",
volume="19",
number="7",
pages="557-578",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1700485"
}

%0 Journal Article
%T Bounded adaptive output feedback tracking control for flexible-joint robot manipulators
%A Hua-shan Liu
%A Yong Huang
%J Journal of Zhejiang University SCIENCE A
%V 19
%N 7
%P 557-578
%@ 1673-565X
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1700485

TY - JOUR
T1 - Bounded adaptive output feedback tracking control for flexible-joint robot manipulators
A1 - Hua-shan Liu
A1 - Yong Huang
J0 - Journal of Zhejiang University Science A
VL - 19
IS - 7
SP - 557
EP - 578
%@ 1673-565X
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1700485


Abstract: 
This paper presents a bounded adaptive output feedback tracking control approach for flexible-joint robot manipulators with parametric uncertainties and bounded torque inputs, from a systematic perspective of different (weak or strong) joint flexibilities. The singular perturbation theory and integral manifold concept are applied to decouple the dynamics of flexible-joint robot manipulators into a slow subsystem and a fast subsystem. A class of saturation functions is used to make the control law bounded, ensuring the torque control inputs are within the output limitation of the joint actuators. An adaptive control law of the projection type is adopted to handle the feed-forward term of the slow sub-controller with parametric uncertainties. Meanwhile, an approximate differential filter and a high-gain observer are utilized in the slow and fast subsystems, respectively, to estimate the unmeasurable states, making the complete closed-loop control with only position measurements of motors and links. Importantly, a corrective control scheme is proposed to break through the traditional singular perturbation approach and to make it feasible for robot manipulators with strong joint flexibility. Furthermore, an all-round and strict stability analysis of the whole control system is given. Finally, simulation results verify the superior dynamic performance of the proposed approach.

柔性关节机器人有界自适应输出反馈控制

目的:考虑关节驱动力矩受限、结构参数不确定以及缺少部分传感器测量等情况,本文研究力矩输入有界的一般柔性关节机器人自适应输出反馈控制方法,以提高轨迹跟踪性能.
创新点:1. 提出一种基于校正控制的强柔性关节机器人控制方法; 2. 设计一类力矩控制输入有界的自适应输出反馈轨迹跟踪控制器.
方法:1. 引入校正控制,突破传统奇异摄动方法仅适用于弱柔性关节机器人的限制; 2. 通过一类光滑饱和函数和投影型自适应控制律,确保在参数不确定情况下力矩控制输入的有界性; 3. 利用近似微分滤波和高增益观测实现仅需电机侧和连杆侧位置测量的输出反馈控制.
结论:1. 提出的校正控制策略能够较好地适应不同程度的关节柔性; 2. 设计的有界自适应输出反馈控制方法可严格确保作业全程的控制输入值有界,且具有良好的轨迹跟踪性能.

关键词:机器人;柔性关节;输出反馈控制;有界控制;自适应控制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Al-Ashoor RA, Patel RV, Khorasani K, 1993. Robust adaptive controller design and stability analysis for flexible-joint manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 23(2):589-602.

[2]Avila-Becerril S, Lorýa A, Panteley E, 2016. Global position-feedback tracking control of flexible-joint robots. Proceedings of the American Control Conference, p.3008-3013.

[3]Caverly RJ, Zlotnik DE, Bridgeman LJ, et al., 2014a. Saturated proportional derivative control of flexible-joint manipulators. Robotics and Computer-Integrated Manufacturing, 30(6):658-666.

[4]Caverly RJ, Zlotink DE, Forbes JR, 2014b. Saturated proportional derivative control of a single-link flexible-joint manipulator. Transactions of the Canadian Society for Mechanical Engineering, 38(2):241-250.

[5]Caverly RJ, Zlotnik DE, Forbes JR, 2016. Saturated control of flexible-joint manipulators using a Hammerstein strictly positive real compensator. Robotica, 34(06):1367-1382.

[6]Chen M, Ge SS, 2015. Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer. IEEE Transactions on Industrial Electronics, 62(12):7706-7716.

[7]Ge SS, 1996. Adaptive controller design for flexible joint manipulators. Automatica, 32(2):273-278.

[8]Han MC, Chen YH, 1993. Robust control design for uncertain flexible-joint manipulators: a singular perturbation approach. Proceedings of the 32nd IEEE Conference on Decision and Control, p.611-616.

[9]Hong Y, Yao B, 2007. A globally stable saturated desired compensation adaptive robust control for linear motor systems with comparative experiments. Automatica, 43(10):1840-1848.

[10]Hu J, Sun X, He L, et al., 2018. Adaptive output feedback formation tracking for a class of multiagent systems with quantized input signals. Frontiers of Information Technology & Electronic Engineering, in press.

[11]Izadbakhsh A, 2016. Robust control design for rigid-link flexible-joint electrically driven robot subjected to constraint: theory and experimental verification. Nonlinear Dynamics, 85(2):751-765.

[12]Kelly R, Ortega R, Ailon A, et al., 1994. Global regulation of flexible joint robots using approximate differentiation. IEEE Transactions on Automatic Control, 39(6):1222-1224.

[13]Khalil HK, Grizzle JW, 1996. Nonlinear Systems, 3rd Edition. Prentice Hall, New Jersey, USA.

[14]Khalil HK, Praly L, 2014. High-gain observers in nonlinear feedback control. International Journal of Robust and Nonlinear Control, 24(6):993-1015.

[15]Khorasani K, 1992. Adaptive control of flexible-joint robots. IEEE Transactions on Robotics and Automation, 8(2):250-267.

[16]Khosravi MA, Taghirad HD, 2014. Dynamic modeling and control of parallel robots with elastic cables: singular perturbation approach. IEEE Transactions on Robotics, 30(3):694-704.

[17]Kiang CT, Spowage A, Yoong CK, 2015. Review of control and sensor system of flexible manipulator. Journal of Intelligent & Robotic Systems, 77(1):187-213.

[18]Li Y, Tong S, Li T, 2013. Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping. Nonlinear Analysis: Real World Applications, 14(1):483-494.

[19]Lightcap CA, Banks SA, 2010. An extended Kalman filter for real-time estimation and control of a rigid-link flexible-joint manipulator. IEEE Transactions on Control Systems Technology, 18(1):91-103.

[20]Liu HS, Zhu SQ, 2009. A generalized trajectory tracking controller for robot manipulators with bounded inputs. Journal of Zhejiang University-SCIENCE A, 10(10):1500-1508.

[21]Liu HS, Zhu SQ, Chen ZW, 2010. Saturated output feedback tracking control for robot manipulators via fuzzy self-tuning. Journal of Zhejiang University SCIENCE C (Computers & Electronics), 11(12):956-966.

[22]Liu HS, Hao KR, Lai XB, 2011. Fuzzy saturated output feedback tracking control for robot manipulators: a singular perturbation theory based approach. International Journal of Advanced Robotic Systems, 8(4):43-53.

[23]Liu HS, Huang Y, Wu WX, 2016. Improved adaptive output feedback controller for flexible-joint robot manipulators. Proceedings of the 2016 IEEE International Conference on Information and Automation, p.1653-1658.

[24]Liu YC, Jin MH, Liu H, 2008. Singular perturbation control for flexible-joint manipulator based on flexibility compensation. Robot, 30(5):460-465 (in Chinese).

[25]López-Araujo DJ, Zavala-Río A, Santibáñez V, et al., 2013. Output-feedback adaptive control for the global regulation of robot manipulators with bounded inputs. International Journal of Control, Automation and Systems, 11(1):105-115.

[26]Loria A, 2016. Observers are unnecessary for output-feedback control of Lagrangian systems. IEEE Transactions on Automatic Control, 61(4):905-920.

[27]Loria A, Nijmeijer H, 1998. Bounded output feedback tracking control of fully actuated Euler–Lagrange systems. Systems & Control Letters, 33(3):151-161.

[28]Loria A, Avila-Becerril S, 2014. Output-feedback global tracking control of robot manipulators with flexible joints. Proceedings of the American Control Conference, p.4032-4037.

[29]Nanos K, Papadopoulos EG, 2015. On the dynamics and control of flexible joint space manipulators. Control Engineering Practice, 45:230-243.

[30]Park BS, Yoo SJ, Park JB, et al., 2011. Adaptive output-feedback control for trajectory tracking of electrically driven non-holonomic mobile robots. IET Control Theory & Applications, 5(6):830-838.

[31]Ruderman M, Iwasaki M, 2016. Sensorless torsion control of elastic-joint robots with hysteresis and friction. IEEE Transactions on Industrial Electronics, 63(3):1889-1899.

[32]Spong MW, 1987. Modeling and control of elastic joint robots. Journal of Dynamic Systems, Measurement, and Control, 109(4):310-318.

[33]Spong MW, Khorasani K, Kokotovic PV, 1987. An integral manifold approach to the feedback control of flexible joint robots. IEEE Journal on Robotics and Automation, 3(4):291-300.

[34]Tong S, Sui S, Li Y, 2015. Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Transactions on Fuzzy Systems, 23(4):729-742.

[35]Ulrich S, Sasiadek JZ, Barkana I, 2014. Nonlinear adaptive output feedback control of flexible-joint space manipulators with joint stiffness uncertainties. Journal of Guidance, Control, and Dynamics, 37(6):1961-1975.

[36]Yoo SJ, Park JB, Choi YH, 2008. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach. IEEE Transactions on Neural Networks, 19(10):1712-1726.

[37]Yu XY, Chen L, 2015. Modeling and observer-based augmented adaptive control of flexible-joint free-floating space manipulators. Acta Astronautica, 108:146-155.

[38]Zergeroglu E, Dixon W, Behal A, et al., 2000. Adaptive set-point control of robotic manipulators with amplitude-limited control inputs. Robotica, 18(2):171-181.

[39]Zhang L, Liu J, 2012. Observer-based partial differential equation boundary control for a flexible two-link manipulator in task space. IET Control Theory & Applications, 6(13):2120-2133.

[40]Zhang L, Liu J, 2013. Adaptive boundary control for flexible two-link manipulator based on partial differential equation dynamic model. IET Control Theory & Applications, 7(1):43-51.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE