Full Text:   <2218>

Summary:  <1826>

CLC number: TU311.2; TU391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-07-18

Cited: 0

Clicked: 3312

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yong Chen

https://orcid.org/0000-0003-0493-9536

Hai-wei Xu

https://orcid.org/0000-0003-2091-5796

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2019 Vol.20 No.8 P.590-600

http://doi.org/10.1631/jzus.A1900169


Effective length factor of a non-symmetrical cross-bracing system with a discontinuous diagonal


Author(s):  Yong Chen, Yong Guo, Hai-wei Xu

Affiliation(s):  College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   haiwe163@163.com

Key Words:  Non-symmetrical cross-bracing system, Discontinuous diagonal, Out-of-plane buckling analysis, Effective length factor


Yong Chen, Yong Guo, Hai-wei Xu. Effective length factor of a non-symmetrical cross-bracing system with a discontinuous diagonal[J]. Journal of Zhejiang University Science A, 2019, 20(8): 590-600.

@article{title="Effective length factor of a non-symmetrical cross-bracing system with a discontinuous diagonal",
author="Yong Chen, Yong Guo, Hai-wei Xu",
journal="Journal of Zhejiang University Science A",
volume="20",
number="8",
pages="590-600",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1900169"
}

%0 Journal Article
%T Effective length factor of a non-symmetrical cross-bracing system with a discontinuous diagonal
%A Yong Chen
%A Yong Guo
%A Hai-wei Xu
%J Journal of Zhejiang University SCIENCE A
%V 20
%N 8
%P 590-600
%@ 1673-565X
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900169

TY - JOUR
T1 - Effective length factor of a non-symmetrical cross-bracing system with a discontinuous diagonal
A1 - Yong Chen
A1 - Yong Guo
A1 - Hai-wei Xu
J0 - Journal of Zhejiang University Science A
VL - 20
IS - 8
SP - 590
EP - 600
%@ 1673-565X
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900169


Abstract: 
A non-rectangular frame panel usually contains an asymmetrical cross-bracing system with interrupted diagonals, leading to a more complicated buckling behavior than a symmetrical bracing system with continuous diagonals. There have been many studies of the stability theory of symmetrical cross-bracing systems, but few related to non-symmetrical systems. In this study, we analyzed elastic out-of-plane buckling of a general non-symmetrical cross-bracing system with a discontinuous diagonal. The discontinuous and continuous diagonals have different material and geometrical properties, and are not intersected at their mid-spans. A characteristic equation is presented to compute the critical loading of a non-symmetrical cross-bracing system when the supporting diagonal is under either compression or tension. The results show that the characteristic equation of a non-symmetrical bracing system can be transformed into a form the same as that of a geometrically mono-symmetrical system. To facilitate design applications, direct closed-form empirical equations of effective length factor are established for a general non-symmetrical cross-bracing case. The validity of the proposed empirical equations was verified by comparing predicted and theoretical results, and those from a stiffness approach.

This paper presents an elastic instability analysis of cross-bracing systems that can exhibit asymmetry and discontinuity.Generally speaking,the paper is well-written and the materials are logically presented.

含非连续支撑的非对称交叉斜撑体系的计算长度系数

目的:非矩形平面框架致使其交叉斜撑体系具有非对称性,而采用了非连续支撑的非对称非连续交叉支撑体系的面外稳定问题更为复杂. 本文旨在通过建立无量纲稳定特征方程,从理论上深入阐释该交叉支撑体系的面外屈曲特征,并为工程设计提供显式的压杆计算长度系数的计算公式.
创新点:1. 建立一般情况下非对称非连续交叉斜撑体系的无量纲特征方程; 2. 针对各种可能受力工况,详细分析该交叉支撑体系的面外屈曲特征,并给出理论解释; 3. 提出非对称非连续交叉斜撑体系中压杆计算长度系数的显式经验计算公式.
方法:1. 通过对非对称非连续交叉支撑体系进行弹性面外屈曲建模,以及稳定平衡方程的无量纲化,推导出其相应的特征方程; 2. 通过变量替换,揭示其内在对称性,从而为经验公式的构造提供依据; 3. 针对各种受力工况,进行求解域分析和确定,完成特征方程的求解,以进行面外屈曲特征分析,并提出压杆计算长度系数的经验公式; 4. 利用经验公式对多个实例进行计算,并与基于有限元的刚度法结果以及以往的文献数据进行比较,以验证经验公式的可靠性.
结论:1. 推导出了非对称非连续交叉斜撑体系的特征方程; 采用无量纲参数后,该方程具有一般性. 2. 通过变量替换,该方程可以转换为与单轴几何对称交叉斜撑相同的特征方程形式. 3. 当交叉斜撑中的连续杆和非连续杆同时受压时,非连续杆将率先失稳. 4. 针对各种受力工况,提出了交叉支撑体系的压杆计算长度系数的显式经验公式,且计算结果兼具可靠性和准确性.

关键词:非对称交叉支撑体系; 非连续支撑; 面外屈曲分析; 计算长度系数

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen Y, McFarland DM, Spencer Jr BF, et al., 2015. Exact solution of free vibration of a uniform tensioned beam combined with both lateral and rotational linear sub-systems. Journal of Sound and Vibration, 341:206-221.

[2]Chen Y, Hu ZZ, Guo Y, et al., 2019. Ultimate bearing capacity of CHS X-joints stiffened with external ring stiffeners and gusset plates subjected to brace compression. Engineering Structures, 181:76-88.

[3]Davaran A, 2001. Effective length factor for discontinuous X-bracing systems. Journal of Engineering Mechanics, 127(2):106-112.

[4]Davaran A, Hoveidae N, 2009. Effect of mid-connection detail on the behavior of X-bracing systems. Journal of Constructional Steel Research, 65(4):985-990.

[5]Davaran A, Gélinas A, Tremblay R, 2015. Inelastic buckling analysis of steel X-bracing with bolted single shear lap connections. Journal of Structural Engineering, 141(8):04014204.

[6]Dewolf JT, Pelliccione JF, 1979. Cross-bracing design. Journal of the Structural Division, 105(7):1379-1391.

[7]El-Tayem AA, Goel SC, 1986. Effective length factor for the design of X-bracing systems. Engineering Journal, 23(1):41-45.

[8]Kitipornchai S, Finch DL, 1986. Stiffness requirements for cross bracing. Journal of Structural Engineering, 112(12):2702-2707.

[9]Moon J, Yoon KY, Han TS, et al., 2008. Out-of-plane buckling and design of X-bracing systems with discontinuous diagonals. Journal of Constructional Steel Research, 64(3):285-294.

[10]Picard A, Beaulieu D, 1987. Design of diagonal cross bracings. Part 1: theoretical study. Engineering Journal, 24(3):122-126.

[11]Sabelli R, Hohbach D, 1999. Design of cross-braced frames for predictable buckling behavior. Journal of Structural Engineering, 125(2):163-168.

[12]Segal F, Levy R, Rutenberg A, 1994. Design of imperfect cross-bracings. Journal of Engineering Mechanics, 120(5):1057-1075.

[13]Stoman SH, 1988. Stability criteria for X-bracing systems. Journal of Engineering Mechanics, 114(8):1426-1434.

[14]Stoman SH, 1989. Effective length spectra for cross bracings. Journal of Structural Engineering, 115(12):3112-3122.

[15]Thevendran V, Wang CM, 1993. Stability of nonsymmetric cross-bracing systems. Journal of Structural Engineering, 119(1):169-180.

[16]Timoshenko SP, Gere JM, 1961. Theory of Elastic Stability. McGraw-Hill, New York, USA.

[17]Wang CM, Nazmul IM, 2003. Buckling of columns with intermediate elastic restraint. Journal of Engineering Mechanics, 129(2):241-244.

[18]Wang DQ, Boresi AP, 1992. Theoretical study of stability criteria for X-bracing systems. Journal of Engineering Mechanics, 118(7):1357-1364.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE