CLC number: TU41
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-11-16
Cited: 0
Clicked: 3153
Citations: Bibtex RefMan EndNote GB/T7714
Yi-lin Wang, Xin-zhuang Cui, Kai-wen Liu. Deformational characteristics of sensor-enabled geobelts incorporating two failure modes in reinforced sand[J]. Journal of Zhejiang University Science A, 2020, 21(12): 961-975.
@article{title="Deformational characteristics of sensor-enabled geobelts incorporating two failure modes in reinforced sand",
author="Yi-lin Wang, Xin-zhuang Cui, Kai-wen Liu",
journal="Journal of Zhejiang University Science A",
volume="21",
number="12",
pages="961-975",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2000056"
}
%0 Journal Article
%T Deformational characteristics of sensor-enabled geobelts incorporating two failure modes in reinforced sand
%A Yi-lin Wang
%A Xin-zhuang Cui
%A Kai-wen Liu
%J Journal of Zhejiang University SCIENCE A
%V 21
%N 12
%P 961-975
%@ 1673-565X
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2000056
TY - JOUR
T1 - Deformational characteristics of sensor-enabled geobelts incorporating two failure modes in reinforced sand
A1 - Yi-lin Wang
A1 - Xin-zhuang Cui
A1 - Kai-wen Liu
J0 - Journal of Zhejiang University Science A
VL - 21
IS - 12
SP - 961
EP - 975
%@ 1673-565X
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2000056
Abstract: Geobelt deformation is of significance when making prejudgments on potential failure planes in reinforced structures. A failure plane results from two geobelt failure modes, tensile failure and pullout. In order to investigate the deformation characteristics of geobelts in two failure modes, results from pullout tests on sensor-enabled geobelts (SEGBs) with various lengths in sand are reported here across a range of normal pressures. Self-measurements of SEGB can provide data during the tests regarding distributions of strain, stress, and displacement. Data collected during pullout tests reveal the effects of normal pressures and specimen lengths on failure mode. A critical line considering normal pressure and specimen length is derived to describe the transition between two failure modes, an approach which can be utilized for preliminary predictions of failure mode in pullout tests. Warning criteria established based on critical line and data from the self-measurements of SEGB are proposed for failure mode prediction which can contribute to prejudgments of potential failure plane in geosynthetically reinforced soil structures.
[1]Allen TM, Bathurst RJ, 2014. Performance of an 11 m high block-faced geogrid wall designed using the K-stiffness method. Canadian Geotechnical Journal, 51(1):16-29.
[2]ASTM (American Society for Testing and Materials), 2007. Standard Test Method for Particle-size Analysis of Soils, ASTM D422-63(2007)e2. ASTM International, West Conshohocken, USA.
[3]ASTM (American Society for Testing and Materials), 2013. Standard Test Method for Measuring Geosynthetic Pullout Resistance in Soil, ASTM D6706-01(2013). ASTM International, West Conshohocken, USA.
[4]ASTM (American Society for Testing and Materials), 2015. Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-rib Tensile Method, ASTM D6637/D6637M-15. ASTM International, West Conshohocken, USA.
[5]Bathurst RJ, Ezzein FM, 2016. Geogrid pullout load-strain behaviour and modelling using a transparent granular soil. Geosynthetics International, 23(4):271-286.
[6]Bathurst RJ, Ezzein FM, 2017. Insights into geogrid-soil interaction using a transparent granular soil. Géotechnique Letters, 7(2):179-183.
[7]Benessalah I, Arab A, Villard P, et al., 2016. Shear strength response of a geotextile-reinforced Chlef sand: a laboratory study. Geotechnical and Geological Engineering, 34(6):1775-1790.
[8]Cardile G, Gioffrè D, Moraci N, et al., 2017. Modelling interference between the geogrid bearing members under pullout loading conditions. Geotextiles and Geomembranes, 45(3):169-177.
[9]Chaiyaput S, Bergado DT, Artidteang S, 2014. Measured and simulated results of a Kenaf limited life geosynthetics (LLGs) reinforced test embankment on soft clay. Geotextiles and Geomembranes, 42(1):39-47.
[10]Chen RP, Wang YW, Ye XW, et al., 2016. Tensile force of geogrids embedded in pile-supported reinforced embankment: a full-scale experimental study. Geotextiles and Geomembranes, 44(2):157-169.
[11]Cui XZ, Cui SQ, Jin Q, et al., 2018. Laboratory tests on the engineering properties of sensor-enabled geobelts (SEGB). Geotextiles and Geomembranes, 46(1):66-76.
[12]Cui XZ, Wang YL, Liu KW, et al., 2019. A simplified model for evaluating the hardening behaviour of sensor-enabled geobelts during pullout tests. Geotextiles and Geomembranes, 47(3):377-388.
[13]Cui XZ, Wang YL, Liu KW, et al., 2020. Strain-softening model evaluating geobelt–clay interaction validated by laboratory tests of sensor-enabled geobelts. Canadian Geotechnical Journal, 57(3):354-365.
[14]Ghionna VN, Moraci N, Rimoldi P, 2001. Experimental evaluation of the factors affecting pull-out test results on geogrids. Proceedings of the International Symposium on Earth Reinforcement.
[15]Gurung N, 2001. 1-D analytical solution for extensible and inextensible soil/rock reinforcement in pull-out tests. Geotextiles and Geomembranes, 19(4):195-212.
[16]Hatami K, Grady BP, Ulmer MC, 2009. Sensor-enabled geosynthetics: use of conducting carbon networks as geosynthetic sensors. Journal of Geotechnical and Geoenvironmental Engineering, 135(7):863-874.
[17]Hayashi S, Alfaro MC, Watanabe K, 1996. Dilatancy effects of granular soil on the pullout resistance of strip reinforcement. Proceedings of the International Symposium on Earth Reinforcement, p.39-44.
[18]King DJ, Bouazza A, Gniel JR, et al., 2017a. Load-transfer platform behaviour in embankments supported on semi-rigid columns: implications of the ground reaction curve. Canadian Geotechnical Journal, 54(8):1158-1175.
[19]King DJ, Bouazza A, Gniel JR, et al., 2017b. Serviceability design for geosynthetic reinforced column supported embankments. Geotextiles and Geomembranes, 45(4):261-279.
[20]King DJ, Bouazza A, Gniel JR, et al., 2018. Geosynthetic reinforced column supported embankments and the role of ground improvement installation effects. Canadian Geotechnical Journal, 55(6):792-809.
[21]Liu HB, 2016. Nonlinear elastic analysis of reinforcement loads for vertical reinforced soil composites without facing restriction. Journal of Geotechnical and Geoenvironmental Engineering, 142(6):04016013.
[22]Liu HB, Yang GQ, Hung C, 2017. Analyzing reinforcement loads of vertical geosynthetic-reinforced soil walls considering toe restraint. International Journal of Geomechanics, 17(6):04016140.
[23]Liu HB, Hung C, Cao JZ, 2018. Relationship between Arias intensity and the responses of reinforced soil retaining walls subjected to near-field ground motions. Soil Dynamics and Earthquake Engineering, 111:160-168.
[24]Luo N, Bathurst RJ, 2018. Deterministic and random FEM analysis of full-scale unreinforced and reinforced embankments. Geosynthetics International, 25(2):164-179.
[25]Mehrjardi GT, Ghanbari A, Mehdizadeh H, 2016. Experimental study on the behaviour of geogrid-reinforced slopes with respect to aggregate size. Geotextiles and Geomembranes, 44(6):862-871.
[26]Moraci N, Recalcati P, 2006. Factors affecting the pullout behaviour of extruded geogrids embedded in a compacted granular soil. Geotextiles and Geomembranes, 24(4):220-242.
[27]Mosallanezhad M, Taghavi SHS, Hataf N, et al., 2016. Experimental and numerical studies of the performance of the new reinforcement system under pull-out conditions. Geotextiles and Geomembranes, 44(1):70-80.
[28]Mousavi SH, Gabr MA, Borden RH, 2017. Optimum location of geogrid reinforcement in unpaved road. Canadian Geotechnical Journal, 54(7):1047-1054.
[29]Ni PP, Mei GX, Zhao YL, 2017. Displacement-dependent earth pressures on rigid retaining walls with compressible geofoam inclusions: physical modeling and analytical solutions. International Journal of Geomechanics, 17(6):04016132.
[30]Pinho-Lopes M, Paula AM, Lopes ML, 2015. Pullout response of geogrids after installation. Geosynthetics International, 22(5):339-354.
[31]Pinho-Lopes M, Paula AM, Lopes ML, 2016. Soil-geosynthetic interaction in pullout and inclined-plane shear for two geosynthetics exhumed after installation damage. Geosynthetics International, 23(5):331-347.
[32]Rousé PC, Fannin RJ, Taiebat M, 2014. Sand strength for back-analysis of pull-out tests at large displacement. Géotechnique, 64(4):320-324.
[33]Rowe RK, Liu KW, 2015. Three-dimensional finite element modelling of a full-scale geosynthetic-reinforced, pile-supported embankment. Canadian Geotechnical Journal, 52(12):2041-2054.
[34]Shi WZ, Peng FL, Kongkitkul W, 2016. FE simulation of rate-dependent behaviours of polymer geosynthetic reinforcements for an estimation of mobilized tensile force in a reinforced soil. Computers and Geotechnics, 80:49-58.
[35]Tran VDH, Meguid MA, Chouinard LE, 2013. A finite-discrete element framework for the 3D modeling of geogrid-soil interaction under pullout loading conditions. Geotextiles and Geomembranes, 37:1-9.
[36]Wang ZJ, Jacobs F, Ziegler M, 2016. Experimental and DEM investigation of geogrid–soil interaction under pullout loads. Geotextiles and Geomembranes, 44(3):230-246.
[37]Xiao CZ, Han J, Zhang Z, 2016. Experimental study on performance of geosynthetic-reinforced soil model walls on rigid foundations subjected to static footing loading. Geotextiles and Geomembranes, 44(1):81-94.
[38]Xu F, Chai JC, 2014. Lateral displacement of PVD-improved deposit under embankment loading. Geosynthetics International, 21(5):286-300.
[39]Yang SC, Leshchinsk B, Zhang F, et al., 2016. Required strength of geosynthetic in reinforced soil structures supporting spread footings in three dimensions. Computers and Geotechnics, 78:72-87.
[40]Yarivand A, Behnia C, Bakhtiyari S, et al., 2017. Performance of geosynthetic reinforced soil bridge abutments with modular block facing under fire scenarios. Computers and Geotechnics, 85:28-40.
[41]Yu Y, Bathurst RJ, 2017. Probabilistic assessment of reinforced soil wall performance using response surface method. Geosynthetics International, 24(5):524-542.
[42]Yu Y, Bathurst RJ, Allen TM, et al., 2016. Physical and numerical modelling of a geogrid-reinforced incremental concrete panel retaining wall. Canadian Geotechnical Journal, 53(12):1883-1901.
[43]Zhou J, Chen JF, Xue JF, et al., 2012. Micro-mechanism of the interaction between sand and geogrid transverse ribs. Geosynthetics International, 19(6):426-437.
[44]Zhou M, Liu HL, Chen YM, et al., 2016. First application of cast-in-place concrete large-diameter pipe (PCC) pile-reinforced railway foundation: a field study. Canadian Geotechnical Journal, 53(4):708-716.
Open peer comments: Debate/Discuss/Question/Opinion
<1>