CLC number: TU91
On-line Access: 2021-03-10
Received: 2020-03-31
Revision Accepted: 2020-07-07
Crosschecked: 2021-02-20
Cited: 0
Clicked: 3377
Yi-guo Xue, Ze-xu Ning, Dao-hong Qiu, Mao-xin Su, Zhi-qiang Li, Fan-meng Kong, Guang-kun Li, Peng Wang. A study of water curtain parameters of underground oil storage caverns using time series monitoring and numerical simulation[J]. Journal of Zhejiang University Science A, 2021, 22(3): 165-181.
@article{title="A study of water curtain parameters of underground oil storage caverns using time series monitoring and numerical simulation",
author="Yi-guo Xue, Ze-xu Ning, Dao-hong Qiu, Mao-xin Su, Zhi-qiang Li, Fan-meng Kong, Guang-kun Li, Peng Wang",
journal="Journal of Zhejiang University Science A",
volume="22",
number="3",
pages="165-181",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2000130"
}
%0 Journal Article
%T A study of water curtain parameters of underground oil storage caverns using time series monitoring and numerical simulation
%A Yi-guo Xue
%A Ze-xu Ning
%A Dao-hong Qiu
%A Mao-xin Su
%A Zhi-qiang Li
%A Fan-meng Kong
%A Guang-kun Li
%A Peng Wang
%J Journal of Zhejiang University SCIENCE A
%V 22
%N 3
%P 165-181
%@ 1673-565X
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2000130
TY - JOUR
T1 - A study of water curtain parameters of underground oil storage caverns using time series monitoring and numerical simulation
A1 - Yi-guo Xue
A1 - Ze-xu Ning
A1 - Dao-hong Qiu
A1 - Mao-xin Su
A1 - Zhi-qiang Li
A1 - Fan-meng Kong
A1 - Guang-kun Li
A1 - Peng Wang
J0 - Journal of Zhejiang University Science A
VL - 22
IS - 3
SP - 165
EP - 181
%@ 1673-565X
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2000130
Abstract: Water curtain systems (WCSs) are key components for the operation of underground oil storage caverns (UOSCs) and their optimization and design are important areas of research. Based on the time series monitoring of the first large-scale underground water-sealed storage cavern project in China, and on finite element analysis, this study explores the optimum design criteria for WCSs in water-sealed oil caverns. It shows that the optimal hole spacing of the WCS for this underground storage cavern is 10 m in order to ensure seal effectiveness. When the WCS is designed with a 10-m horizontal hole spacing and a water curtain pressure (WCP) of 80 kPa, a water curtain hole (WCH) has an influence radius of approximately 25 m. The smaller the vertical distance is between a WCH and the main cavern, the greater the water inflow into the main cavern. The vertical hydraulic gradient criterion can be satisfied when this distance is 25 m. It shows that the optimal WCP is 70 kPa, which meets sealing requirements.
[1]Åberg B, 1978. Prevention of gas leakage from unlined reservoirs in rock. Proceedings of the 1st International Symposium on Storage in Excavated Rock Caverns, p.399-413.
[2]Aliyu MM, Shang J, Murphy W, et al., 2019. Assessing the uniaxial compressive strength of extremely hard cryptocrystalline flint. International Journal of Rock Mechanics and Mining Sciences, 113:310-321.
[3]Chen YM, Xu XB, Zhan LT, 2012. Analysis of solid-liquid-gas interactions in landfilled municipal solid waste by a bio-hydro-mechanical coupled model. Science China Technological Sciences, 55(1):81-89.
[4]Cornet FH, 2016. Seismic and aseismic motions generated by fluid injections. Geomechanics for Energy and the Environment, 5:42-54.
[5]Ehlers W, 2018. Effective stresses in multiphasic porous media: a thermodynamic investigation of a fully non-linear model with compressible and incompressible constituents. Geomechanics for Energy and the Environment, 15:35-46.
[6]Hou GX, Shu SZ, 2016. A numerical approach to solve 3D geotechnical problems with 2D codes. Proceedings of the 4th Geo-China International Conference, p.160-166.
[7]Kjørholt H, Broch E, 1992. The water curtain—a successful means of preventing gas leakage from high-pressure, unlined rock caverns. Tunnelling and Underground Space Technology, 7(2):127-132.
[8]Kong F, Shang J, 2018. A validation study for the estimation of uniaxial compressive strength based on index tests. Rock Mechanics and Rock Engineering, 51(7):2289-2297.
[9]Lee CI, Song JJ, 2003. Rock engineering in underground energy storage in Korea. Tunnelling and Underground Space Technology, 18(5):467-483.
[10]Levinson G, Ajling G, Nord G, 2004. Design and construction of the Ningbo underground LPG storage project in China. Tunnelling and Underground Space Technology, 19(4-5):374-375.
[11]Li SC, Ping Y, Wang ZC, et al., 2012. Assessments of containment and stability of underground crude oil storage caverns based on fluid-solid coupling theory for discrete medium. Chinese Journal of Rock Mechanics and Engineering, 31(11):2161-2170 (in Chinese).
[12]Li SC, Wang ZC, Ping Y, et al., 2014. Discrete element analysis of hydro-mechanical behavior of a pilot underground crude oil storage facility in granite in China. Tunnelling and Underground Space Technology, 40:75-84.
[13]Li Y, Chen YF, Zhang GJ, et al., 2017. A numerical procedure for modeling the seepage field of water-sealed underground oil and gas storage caverns. Tunnelling and Underground Space Technology, 66:56-63.
[14]Li ZK, Wang KZ, Wang AM, et al., 2009. Experimental study of water curtain performance for gas storage in an underground cavern. Journal of Rock Mechanics and Geotechnical Engineering, 1(1):89-96.
[15]Li ZQ, Xue YG, Qiu DH, et al., 2017. AHP-ideal point model for large underground petroleum storage site selection: an engineering application. Sustainability, 9(12):2343.
[16]Li ZQ, Xue YG, Li SC, et al., 2019. An analytical model for surrounding rock classification during underground water-sealed caverns construction: a case study from eastern China. Environmental Earth Sciences, 78(20):602.
[17]Li ZQ, Xue YG, Liang JY, et al., 2020. Performance assessment of the water curtain system: a monitoring system in an underground water-sealed oil reservoir in China. Bulletin of Engineering Geology and the Environment, 79(7):3635-3648.
[18]Liu RC, Jiang YJ, Li B, et al., 2015. A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks. Computers and Geotechnics, 65:45-55.
[19]Ma XD, Rudnicki JW, Haimson BC, 2017. Failure characteristics of two porous sandstones subjected to true triaxial stresses: applied through a novel loading path. Journal of Geophysical Research: Solid Earth, 122(4):2525-2540.
[20]Ravandi EG, Rahmannejad R, Karimi-Nasab S, et al., 2018. Water curtain system pre-design for crude oil storage URCs: a numerical modeling and genetic programming approach. Geotechnical and Geological Engineering, 36(2):813-826.
[21]Rouabhi A, Hévin G, Soubeyran A, et al., 2017. A multiphase multicomponent modeling approach of underground salt cavern storage. Geomechanics for Energy and the Environment, 12:21-35.
[22]Shang J, Hencher SR, West LJ, 2016. Tensile strength of geological discontinuities including incipient bedding, rock joints and mineral veins. Rock Mechanics and Rock Engineering, 49(11):4213-4225.
[23]Shang J, Hencher SR, West LJ, et al., 2017. Forensic excavation of rock masses: a technique to investigate discontinuity persistence. Rock Mechanics and Rock Engineering, 50(11):2911-2928.
[24]Shang J, West LJ, Hencher SR, et al., 2018. Tensile strength of large-scale incipient rock joints: a laboratory investigation. Acta Geotechnica, 13(4):869-886.
[25]Shi L, Zhang B, Wang L, et al., 2018. Functional efficiency assessment of the water curtain system in an underground water-sealed oil storage cavern based on time-series monitoring data. Engineering Geology, 239:79-95.
[26]Tang ZC, Jiao YY, Wong LNY, et al., 2016. Choosing appropriate parameters for developing empirical shear strength criterion of rock joint: review and new insights. Rock Mechanics and Rock Engineering, 49(11):4479-4490.
[27]Wang L, Jiao YY, Huang GH, et al., 2017. Improvement of contact calculation in spherical discontinuous deformation analysis. Science China Technological Sciences, 60(5):765-771.
[28]Wang ZC, Li SC, Qiao LP, 2015. Design and test aspects of a water curtain system for underground oil storage caverns in China. Tunnelling and Underground Space Technology, 48:20-34.
[29]Wang ZC, Li W, Qiao LP, et al., 2018. Hydraulic properties of fractured rock mass with correlated fracture length and aperture in both radial and unidirectional flow configurations. Computers and Geotechnics, 104:167-184.
[30]Wu N, Zhang C, Maimaitiyusupu S, et al., 2019. Investigation on properties of rock joint in compression dynamic test. KSCE Journal of Civil Engineering, 23(9):3854-3863.
[31]Wu ZJ, Ma LL, Fan LF, 2018. Investigation of the characteristics of rock fracture process zone using coupled FEM/DEM method. Engineering Fracture Mechanics, 200:355-374.
[32]Xu ZH, Gao B, Li SC, et al., 2018. A groundwater seal evaluation method based on water inflow for underground oil storage caverns. Tunnelling and Underground Space Technology, 82:265-277.
[33]Xue YG, Li SC, Qiu DH, et al., 2015. A new evaluation method for site selection of large underground water-sealed petroleum storage depots. Science China Technological Sciences, 58(6):967-978.
[34]Yan L, Meng QX, Xu WY, et al., 2017. A numerical method for analyzing the permeability of heterogeneous geomaterials based on digital image processing. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(2):124-137.
[35]Yang TH, Jia P, Shi WH, et al., 2014. Seepage-stress coupled analysis on anisotropic characteristics of the fractured rock mass around roadway. Tunnelling and Underground Space Technology, 43:11-19.
[36]Ye B, Cheng ZR, Ye WM, et al., 2019. An analytical solution for analyzing the sealing-efficiency of compressed air energy storage caverns. KSCE Journal of Civil Engineering, 23(5):2025-2035.
Open peer comments: Debate/Discuss/Question/Opinion
<1>