Full Text:   <2857>

Summary:  <854>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 4360

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jin-rong WANG

https://orcid.org/0000-0002-1963-1764

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.1 P.14-26

http://doi.org/10.1631/jzus.A2100280


A biomimetic robot crawling bidirectionally with load inspired by rock-climbing fish


Author(s):  Jin-rong WANG, Yong-xin XI, Chen JI, Jun ZOU

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   junzou@zju.edu.cn

Key Words:  Fish kinematics, Adhesive locomotion mechanism, Fin rays motion, Climbing model, Bio-inspired robot


Jin-rong WANG, Yong-xin XI, Chen JI, Jun ZOU. A biomimetic robot crawling bidirectionally with load inspired by rock-climbing fish[J]. Journal of Zhejiang University Science A, 2022, 23(1): 14-26.

@article{title="A biomimetic robot crawling bidirectionally with load inspired by rock-climbing fish",
author="Jin-rong WANG, Yong-xin XI, Chen JI, Jun ZOU",
journal="Journal of Zhejiang University Science A",
volume="23",
number="1",
pages="14-26",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2100280"
}

%0 Journal Article
%T A biomimetic robot crawling bidirectionally with load inspired by rock-climbing fish
%A Jin-rong WANG
%A Yong-xin XI
%A Chen JI
%A Jun ZOU
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 1
%P 14-26
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2100280

TY - JOUR
T1 - A biomimetic robot crawling bidirectionally with load inspired by rock-climbing fish
A1 - Jin-rong WANG
A1 - Yong-xin XI
A1 - Chen JI
A1 - Jun ZOU
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 1
SP - 14
EP - 26
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2100280


Abstract: 
Using a unique adhesive locomotion system, the rock-climbing fish (Beaufortia kweichowensis) adheres to submerged surfaces and crawls both forwards and backwards in torrential streams. To emulate this mechanism, we present a biomimetic robot inspired by the locomotion model of the rock-climbing fish. The prototype contains two anisotropic adhesive components with linkages connected to a linear actuator. Each anisotropic adhesive component consists of one commercial sucker and two retractable bioinspired fin components. The fin components mimic the abduction and adduction of pectoral and pelvic fins through the retractable part to move up and down. The robot prototype was tested on vertical and inverted surfaces, and worked successfully. These results demonstrate that this novel system represents a new locomotion solution for surface movement without detachment from the substrate.

受爬岩鱼启发的可负载双向爬行仿生机器人

目的:验证爬岩鱼的吸附爬行机理,并提出一种应用于爬壁机器人的新型运动方式实例。
创新点:研制基于生物对象贵州爬岩鳅的运动模式的仿生机器人,并通过仿生机器人复现生物运动模式。
方法:1.对贵州爬岩鳅的运动视频画面进行数字特征点标记跟踪;2.对贵州爬岩鳅的运动模式进行建模分析;3.根据模型进行仿生机器人的设计并进行参数化分析;4.制作仿生机器人实体并进行测试;5.根据实体机器人的测试数据分析其与生物体的相似性。
结论:该仿生机器人证实了贵州爬岩鳅运动模型的正确性,且提出了一种无脱附阶段的壁面爬行方案,为解决壁面机器人吸附与脱附之间的矛盾提供了新思路。

关键词:鱼动力学;吸附运动机理;鱼鳍运动;爬行模型;仿生机器人

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AsbeckAT, KimS, CutkoskyMR, et al., 2006. Scaling hard vertical surfaces with compliant microspine arrays. The International Journal of Robotics Research, 25(12):1165-1179.

[2]BlobRW, WrightKM, BeckerM, et al., 2007. Ontogenetic change in novel functions: waterfall climbing in adult Hawaiian gobiid fishes. Journal of Zoology, 273(2):200-209.

[3]BujardT, Giorgio-SerchiF, WeymouthGD, 2021. A resonant squid-inspired robot unlocks biological propulsive efficiency. Science Robotics, 6(50):eabd2971.

[4]CastilloJ, de la BlancaAP, CabreraJA, et al., 2006. An optical tire contact pressure test bench. Vehicle System Dynamics, 44(3):207-221.

[5]ChangE, MatloffLY, StowersAK, et al., 2020. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion. Science Robotics, 5(38):eaay1246.

[6]de CropW, PauwelsE, van HoorebekeL, et al., 2013. Functional morphology of the Andean climbing catfishes (Astroblepidae, siluriformes): alternative ways of respiration, adhesion, and locomotion using the mouth. Journal of Morphology, 274(10):1164-1179.

[7]DitscheP, WainwrightDK, SummersAP, 2014. Attachment to challenging substrates–fouling, roughness and limits of adhesion in the northern clingfish (Gobiesox maeandricus). Journal of Experimental Biology, 217(14):2548-2554.

[8]FlammangBE, SuvarnarakshaA, MarkiewiczJ, et al., 2016. Tetrapod-like pelvic girdle in a walking cavefish. Scientific Reports, 6:23711.

[9]HaynesGC, KhripinA, LynchG, et al., 2009. Rapid pole climbing with a quadrupedal robot. Proceedings of the IEEE International Conference on Robotics and Automation, p.2767-2772.

[10]IjspeertAJ, 2014. Biorobotics: using robots to emulate and investigate agile locomotion. Science, 346(6206):196-203.

[11]KawanoSM, BlobRW, 2013. Propulsive forces of mudskipper fins and salamander limbs during terrestrial locomotion: implications for the invasion of land. Integrative and Comparative Biology, 53(2):283-294.

[12]KimS, SpenkoM, TrujilloS, et al., 2008. Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics, 24(1):65-74.

[13]KingHM, ShubinNH, CoatesMI, et al., 2011. Behavioral evidence for the evolution of walking and bounding before terrestriality in sarcopterygian fishes. Proceedings of the National Academy of Sciences of the United States of America, 108(52):21146-21151.

[14]KwakMK, PangC, JeongHE, et al., 2011. Towards the next level of bioinspired dry adhesives: new designs and applications. Advanced Functional Materials, 21(19):3606-3616.

[15]PronkoAJ, PerlmanBM, Ashley-RossMA, 2013. Launches, squiggles and pounces, oh my! The water–land transition in mangrove rivulus (Kryptolebias marmoratus). Journal of Experimental Biology, 216(21):3988-3995.

[16]SchoenfussHL, BlobRW, 2003. Kinematics of waterfall climbing in Hawaiian freshwater fishes (Gobiidae): vertical propulsion at the aquatic–terrestrial interface. Journal of Zoology, 261(2):191-205.

[17]WangJR, JiC, WangW, et al., 2019. An adhesive locomotion model for the rock-climbing fish, Beaufortia kweichowensis. Scientific Reports, 9(1):16571.

[18]WicaksonoA, HidayatS, RetnoajiB, et al., 2018. A mechanical piston action may assist pelvic-pectoral fin antagonism in tree-climbing fish. Journal of the Marine Biological Association of the United Kingdom, 98(8):2121-2131.

[19]XuNW, DabiriJO, 2020. Low-power microelectronics embedded in live jellyfish enhance propulsion. Science Advance, 6(5):eaaz3194.

[20]ZouJ, WangJR, JiC, 2016. The adhesive system and anisotropic shear force of Guizhou gastromyzontidae. Scientific Reports, 6:37221.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE