Full Text:   <678>

Summary:  <229>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-02-24

Received: 2022-06-06

Revision Accepted: 2022-09-20

Crosschecked: 2023-02-24

Cited: 0

Clicked: 1323

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Guo-dong SA

https://orcid.org/0000-0001-7803-2270

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.2 P.146-161

http://doi.org/10.1631/jzus.A2200300


Reliability measure approach considering mixture uncertainties under insufficient input data


Author(s):  Zhenyu LIU, Yufeng LYU, Guodong SA, Jianrong TAN

Affiliation(s):  State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   sgd@zju.edu.cn

Key Words:  Insufficient data, Reliability index, Sensitivity analysis, Sparse variable, Uncertainty propagation


Zhenyu LIU, Yufeng LYU, Guodong SA, Jianrong TAN. Reliability measure approach considering mixture uncertainties under insufficient input data[J]. Journal of Zhejiang University Science A, 2023, 24(2): 146-161.

@article{title="Reliability measure approach considering mixture uncertainties under insufficient input data",
author="Zhenyu LIU, Yufeng LYU, Guodong SA, Jianrong TAN",
journal="Journal of Zhejiang University Science A",
volume="24",
number="2",
pages="146-161",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200300"
}

%0 Journal Article
%T Reliability measure approach considering mixture uncertainties under insufficient input data
%A Zhenyu LIU
%A Yufeng LYU
%A Guodong SA
%A Jianrong TAN
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 2
%P 146-161
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200300

TY - JOUR
T1 - Reliability measure approach considering mixture uncertainties under insufficient input data
A1 - Zhenyu LIU
A1 - Yufeng LYU
A1 - Guodong SA
A1 - Jianrong TAN
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 2
SP - 146
EP - 161
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200300


Abstract: 
Reliability analysis and reliability-based optimization design require accurate measurement of failure probability under input uncertainties. A unified probabilistic reliability measure approach is proposed to calculate the probability of failure and sensitivity indices considering a mixture of uncertainties under insufficient input data. The input uncertainty variables are classified into statistical variables, sparse variables, and interval variables. The conservativeness level of the failure probability is calculated through uncertainty propagation analysis of distribution parameters of sparse variables and auxiliary parameters of interval variables. The design sensitivity of the conservativeness level of the failure probability at design points is derived using a semi-analysis and sampling-based method. The proposed unified reliability measure method is extended to consider p-box variables, multi-domain variables, and evidence theory variables. Numerical and engineering examples demonstrate the effectiveness of the proposed method, which can obtain an accurate confidence level of reliability index and sensitivity indices with lower function evaluation number.

不完备数据下考虑变量混合不确定性的可靠性度量方法

作者:刘振宇1,4,吕玉峰1,4,撒国栋2,3,4,谭建荣1,4
机构:1浙江大学,CAD&CG重点实验室,中国杭州,310058;2浙江大学宁波理工学院,中国宁波,315100;3浙江省健康智慧厨房系统集成重点实验室,中国宁波,315336;4浙江大学,机械工程学院,中国杭州,310058
目的:可靠性优化需要精确度量含不确定性变量的系统可靠性。然而,工程实践中往往不能获取充足的样本数据计算可靠性指标,因此本文针对不完备数据下的系统可靠性度量开展研究。
创新点:1.提出了随机变量、稀疏变量以及区间变量混合不确定性下的可靠性度量方法;2.本方法可以推广到p-box和证据理论变量等不确定性变量。
方法:1.建立不完备数据下的失效概率函数;2.基于中间辅助变量实现失效概率的一致性计算;3.针对数据不完备前提下失效概率自身也是不确定性变量的问题,对失效概率指标进行敏感度分析;4.将提出的失效概率计算方法推广到p-box变量、多模态分布变量以及证据理论变量;5.采用经典函数案例验证方法的有效性,并将方法应用于锻压机的可靠性分析。
结论:1.不完备数据下的系统可靠性存在较大的不确定性;2.通过中间辅助变量可以精确分析混合不确定性下系统的失效概率,确定失效概率的随机分布特性;3.提出的方法可以用较少的计算时间获得准确的可靠性结果;4.本文方法可以扩展到更多不确定性类型的可靠性分析,辅助混合不确定性优化设计。

关键词:不完备数据;可靠性指标;敏感度分析;稀疏变量;不确定性传播

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]ChenJB, YangJS, JensenH, 2020. Structural optimization considering dynamic reliability constraints via probability density evolution method and change of probability measure. Structural and Multidisciplinary Optimization, 62(5):2499-2516.

[2]ChenWH, CuiJ, FanXY, et al., 2003. Reliability analysis of DOOF for Weibull distribution. Journal of Zhejiang University-SCIENCE, 4(4):448-453.

[3]ChoH, ChoiKK, GaulNJ, et al., 2016a. Conservative reliability-based design optimization method with insufficient input data. Structural and Multidisciplinary Optimization, 54(6):1609-1630.

[4]ChoH, ChoiKK, LeeI, et al., 2016b. Design sensitivity method for sampling-based RBDO with varying standard deviation. Journal of Mechanical Design, 138(1):011405.

[5]El HajAK, SoubraAH, 2021. Improved active learning probabilistic approach for the computation of failure probability. Structural Safety, 88:102011.

[6]FaesM, MoensD, 2020. Recent trends in the modeling and quantification of non-probabilistic uncertainty. Archives of Computational Methods in Engineering, 27(3):633-671.

[7]GanCB, WangYH, YangSX, 2018. Nonparametric modeling on random uncertainty and reliability analysis of a dual-span rotor. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(3):189-202.

[8]HongLX, LiHC, GaoN, et al., 2021. Random and multi-super-ellipsoidal variables hybrid reliability analysis based on a novel active learning Kriging model. Computer Methods in Applied Mechanics and Engineering, 373:113555.

[9]KangYJ, LimOK, NohY, 2016. Sequential statistical modeling method for distribution type identification. Structural and Multidisciplinary Optimization, 54(6):‍1587-1607.

[10]KeshtegarB, HaoP, 2018. Enhanced single-loop method for efficient reliability-based design optimization with complex constraints. Structural and Multidisciplinary Optimization, 57(4):1731-1747.

[11]LeeI, ChoiKK, NohY, et al., 2011. Sampling-based stochastic sensitivity analysis using score functions for RBDO problems with correlated random variables. Journal of Mechanical Design, 133(2):021003.

[12]LeeI, ChoiKK, NohY, et al., 2013. Comparison study between probabilistic and possibilistic methods for problems under a lack of correlated input statistical information. Structural and Multidisciplinary Optimization, 47(2):175-189.

[13]LiuXX, ElishakoffI, 2020. A combined importance sampling and active learning Kriging reliability method for small failure probability with random and correlated interval variables. Structural Safety, 82:101875.

[14]LiuY, JeongHK, ColletteM, 2016. Efficient optimization of reliability-constrained structural design problems including interval uncertainty. Computers & Structures, 177:1-11.

[15]LiuZY, XuHC, SaGD, et al., 2022. A comparison of sensitivity indices for tolerance design of a transmission mechanism. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(7):527-542.

[16]McFarlandJ, DeCarloE, 2020. A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty. Reliability Engineering & System Safety, 197:106807.

[17]NiBY, JiangC, HuangZL, 2018. Discussions on non-probabilistic convex modelling for uncertain problems. Applied Mathematical Modelling, 59:54-85.

[18]OberkampfWL, HeltonJC, JoslynCA, et al., 2004. Challenge problems: uncertainty in system response given uncertain parameters. Reliability Engineering & System Safety, 85(1-3):11-19.

[19]PengX, LiJQ, JiangSF, 2017. Unified uncertainty representation and quantification based on insufficient input data. Structural and Multidisciplinary Optimization, 56(6):‍‍‍1305-1317.

[20]SankararamanS, MahadevanS, 2013. Distribution type uncertainty due to sparse and imprecise data. Mechanical Systems and Signal Processing, 37(1-2):182-198.

[21]SankararamanS, MahadevanS, 2015. Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems. Reliability Engineering & System Safety, 138:194-209.

[22]SolazziL, 2022. Reliability evaluation of critical local buckling load on the thin walled cylindrical shell made of composite material. Composite Structures, 284:115163.

[23]Tostado-VélizM, Icaza-AlvarezD, JuradoF, 2021. A novel methodology for optimal sizing photovoltaic-battery systems in smart homes considering grid outages and demand response. Renewable Energy, 170:884-896.

[24]Tostado-VélizM, KamelS, AymenF, et al., 2022. A stochastic-IGDT model for energy management in isolated microgrids considering failures and demand response. Applied Energy, 317:119162.

[25]WakjiraTG, IbrahimM, EbeadU, et al., 2022. Explainable machine learning model and reliability analysis for flexural capacity prediction of RC beams strengthened in flexure with FRCM. Engineering Structures, 255:113903.

[26]WangC, LiQW, PangL, et al., 2016. Estimating the time-dependent reliability of aging structures in the presence of incomplete deterioration information. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(9):677-688.

[27]WeiPF, SongJW, BiSF, et al., 2019. Non-intrusive stochastic analysis with parameterized imprecise probability models: II. Reliability and rare events analysis. Mechanical Systems and Signal Processing, 126:227-247.

[28]YunWY, LuZZ, JiangX, et al., 2020. AK-ARBIS: an improved AK-MCS based on the adaptive radial-based importance sampling for small failure probability. Structural Safety, 82:101891.

[29]ZhangZ, WangJ, JiangC, et al., 2019. A new uncertainty propagation method considering multimodal probability density functions. Structural and Multidisciplinary Optimization, 60(5):1983-1999.

[30]ZhaoYG, ZhangXY, LuZH, 2018. Complete monotonic expression of the fourth-moment normal transformation for structural reliability. Computers & Structures, 196:186-199.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE