CLC number: O413.4
On-line Access:
Received: 2005-04-28
Revision Accepted: 2005-07-20
Crosschecked: 0000-00-00
Cited: 0
Clicked: 3497
XU Fu-qiang. NMHV amplitudes in simple electroweak processes[J]. Journal of Zhejiang University Science A, 2005, 6(100): 158-162.
@article{title="NMHV amplitudes in simple electroweak processes",
author="XU Fu-qiang",
journal="Journal of Zhejiang University Science A",
volume="6",
number="100",
pages="158-162",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.AS0158"
}
%0 Journal Article
%T NMHV amplitudes in simple electroweak processes
%A XU Fu-qiang
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 100
%P 158-162
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.AS0158
TY - JOUR
T1 - NMHV amplitudes in simple electroweak processes
A1 - XU Fu-qiang
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 100
SP - 158
EP - 162
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.AS0158
Abstract: The author applied extended BCF/BCFW rules with fermions to a set of simple electroweak processes in colliders. In such processes, there are two electroweak channels, one with a photon and the other with a Z as the internal particle. Some qualifications are needed. Compact results were obtained for tree-level NMHV amplitudes which include a quark-anti-quark pair and n gluons of the same helicity except one in the final state. In this work, we present a brief review of the BCF/BCFW rules and extensions, and list the NMHV amplitudes.
[1] Anastasiou, C., Bern, Z., Dixon, L., Kosower, D., 2003. Planar amplitudes in maximally supersymmetric Yang-Millstheory. Phys. Rev. Lett., 91:251602-251607.
[2] Bedford, J., Brandhuber, A., Spence, B., Travaglini, G., 2005. A Recursion Relation for Gravity Amplitudes. hep-th/0502146.
[3] Bena, I., Bern, Z., Kosower, D.A., 2005. Twistor-space recursive formulation of gauge theory amplitudes. Phys. Rev., D71:045008-045035.
[4] Berends, F.A., Giele, W.T., 1987. The six gluon process as an example of Weyl-Van der Waerden spinor calculus. Nucl. Phys., B294:700.
[5] Berends, F.A., Giele, W.T., 1988. Recursive calculations for processes with n gluons. Nucl. Phys., B306:759-800.
[6] Bern, Z., Dixon, L., Kosower, D., 1996. Progress in one-loop QCD computations. Ann. Rev. Nucl. Part. Sci., 46:109-152.
[7] Bern, Z., De Freitas, A., Dixon, L., 2003. Two-loop helicity amplitudes for quark-gluon scattering in QCD and gluino- gluon scattering in supersymmetric Yang-Mills theory. JHEP, 0306:028-104.
[8] Bern, Z., Dixon, L., Kosower, D., 2004. All Next-to-Maximally-Helicity-Violating One-loop Gluon Amplitudes in N=4 Super-Yang-Mills Theory. hep-th/0412210.
[9] Bern, Z., Del Duca, V., Dixon, L., Kosower, D.A., 2005a. All non-maximally-helicity-violating one-loop seven-gluon amplitudes in N=4 super-Yang-Mills theory. Phys. Rev., D71:045006-045058.
[10] Bern, Z., Dixon, L., Kosower, D., 2005b. On-shell recurrence relations for one-loop QCD amplitudes. Phys. Rev., D71:105013-105024.
[11] Britto, R., Cachazo, F., Feng, B., 2005a. New recursion relations for tree amplitudes of gluons. Nucl. Phys., B715:499-522.
[12] Britto, R., Cachazo, F., Feng, B., Witten, E., 2005b. Direct proof of tree-level recursion relation in Yang-Mills theory. Phys. Rev. Lett., 94:181602-181606.
[13] Cachazo, F., Svrcek, P., 2005. Tree Level Recursion Relations in General Relativity. hep-th/0502160.
[14] Cachazo, F., Svrcek, P., Witten, E., 2004. MHV vertices and tree amplitudes in gauge theory. JHEP, 0409:006-032.
[15] Georgiou, G., Khoze, V.V., 2004. Tree amplitudes in gauge theory as salar MHV diagrams. JHEP, 0405:070-085.
[16] Georgiou, G., Glover, E.W.N., Khoze, V.V., 2004. Non-MHV tree amplitudes in gauge theory. JHEP, 0407:048-070.
[17] Khoze, V., 2004. Gauge Theory Amplitudes, Scalar Graphs and Twistor Space. hep-th/0408233.
[18] Kosower, D.A., 2005. Next-to-Maximal helicity violating amplitudes in gauge theory. Phys. Rev., D71:045007-045018.
[19] Luo, M., Wen, C., 2005a. Recursion relations for tree amplitudes in super gauge theories. JHEP, 0503:004-012.
[20] Luo, M., Wen, C., 2005b. Compact formulas for tree amplitudes of six partons. Phys. Rev., D71:091501-091508.
[21] Mangano, M.L., Parke, S., Xu, Z., 1988. Duality and multi-gluon scattering. Nucl. Phys., B298:653-680.
[22] Parke, S., Taylor, P., 1986. An amplitude for n gluon scattering. Phys. Rev. Lett., 56:2459-2463.
[23] Roiban, R., Spradlin, M., Volovich, A., 2005. Dissolving n=4 loop amplitudes into QCD tree amplitudes. Phys. Rev. Lett., 94:102002-102005.
[24] Witten, E., 2004. Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys., 252:189-286.
[25] Wu, J.B., Zhu, C.J., 2004a. MHV vertices and scattering amplitudes in gauge theory. JHEP, 0407:032-069.
[26] Wu, J.B., Zhu, C.J., 2004b. MHV vertices and fermionic scattering amplitudes in gauge theory with quarks and gluinos. JHEP, 0409:063-103.
[27] Zhu, C.J., 2004. The googly amplitudes in gauge theory. JHEP, 0404:032-047.
Open peer comments: Debate/Discuss/Question/Opinion
<1>