CLC number: R64
On-line Access: 2010-01-01
Received: 2009-09-06
Revision Accepted: 2009-11-27
Crosschecked: 2009-12-11
Cited: 35
Clicked: 6811
Tie-lian LIU, Jing-cheng MIAO, Wei-hua SHENG, Yu-feng XIE, Quan HUANG, Yun-bo SHAN. Cytocompatibility of regenerated silk fibroin film: a medical biomaterial applicable to wound healing[J]. Journal of Zhejiang University Science B, 2010, 11(1): 10-16.
@article{title="Cytocompatibility of regenerated silk fibroin film: a medical biomaterial applicable to wound healing",
author="Tie-lian LIU, Jing-cheng MIAO, Wei-hua SHENG, Yu-feng XIE, Quan HUANG, Yun-bo SHAN",
journal="Journal of Zhejiang University Science B",
volume="11",
number="1",
pages="10-16",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0900163"
}
%0 Journal Article
%T Cytocompatibility of regenerated silk fibroin film: a medical biomaterial applicable to wound healing
%A Tie-lian LIU
%A Jing-cheng MIAO
%A Wei-hua SHENG
%A Yu-feng XIE
%A Quan HUANG
%A Yun-bo SHAN
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 1
%P 10-16
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0900163
TY - JOUR
T1 - Cytocompatibility of regenerated silk fibroin film: a medical biomaterial applicable to wound healing
A1 - Tie-lian LIU
A1 - Jing-cheng MIAO
A1 - Wei-hua SHENG
A1 - Yu-feng XIE
A1 - Quan HUANG
A1 - Yun-bo SHAN
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 1
SP - 10
EP - 16
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0900163
Abstract: Objective: To explore the feasibility of using regenerated silk fibroin membrane to construct artificial skin substitutes for wound healing, it is necessary to evaluate its cytocompatibility. Methods: The effects of regenerated silk fibroin film on cytotoxicity, adhesion, cell cycle, and apoptosis of L929 cells, growth and vascular endothelial growth factor (VEGF) expression of ECV304 cells, and VEGF, angiopoietin-1 (Ang-1), platelet-derived growth factor (PDGF) and fibroblast growth factor 2 (FGF2) expression of WI-38 cells were assessed by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, viable cell counting, flow cytometry (FCM), and enzyme-linked immunosorbant assay (ELISA). Results: We showed that the regenerated silk fibroin film was not cytotoxic to L929 cells and had no adverse influence on their adhesion, cell cycle or apoptosis; it had no adverse influence on the growth and VEGF secretion of ECV304 cells and no effect on the secretion of VEGF, Ang-1, PDGF and FGF2 by WI-38 cells. Conclusion: The regenerated silk fibroin film should be an excellent biomaterial with good cytocompatibility, providing a framework for reparation after trauma in clinical applications.
[1] Altman, G.H., Diaz, F., Jakuba, C., Calabro, T., Horan, R.L., Chen, J., Lu, H., Richmond, J., Kaplan, D.L., 2003. Silk-based biomaterials. Biomaterials, 24(3):401-416.
[2] Augustin, H.G., Breier, G., 2003. Angiogenesis: molecular mechanisms and functional interactions―2nd Kloster Seeon Meeting of the German Priority Research Grant “Angiogenesis”. Thromb. Haemos., 89(1):190-197.
[3] Buffoni, F., Banchelli, G., Cambi, S., 1993. Skin wound healing: some biological parameters in guinea pig. J. Pharm. Pharmacol., 45:784-790.
[4] Chen, X., Li, W.J., Zhong, W., Lu, Y.H., Yu, T.Y., 1997. pH sensitivity and ion sensitivity of hydrogels based on complex-forming chitosan/silk fibroin interpenetrating polymer network. J. Appl. Polym. Sci., 65(11):2257-2262.
[5] Freddi, G., Romano, M., Rosaria, M., Tsukada, M., 1995. Silk fibroin/cellulose blend films: preparation, structure and physical properties. J. Appl. Polym. Sci., 56(12):1537-1545.
[6] Gong, A.H., Li, M.Z., Sheng, W.H., Xie, Y.F., Miao, J.C., Jiang, H.Y., Wu, W.Y., Yang, J.C., 2005. Effect of regenerated silk films on cytogenetic properties of rat embryo dermal fibroblasts. Chin. J. Biomed. Eng., 24(1):38-42 (in Chinese).
[7] Halsted, W., 1892. The employment of fine silk in preference to catgut and the advantage of transfixing tissues and vessels in controlling hemorrhage. Ann. Surg., 16:505-526.
[8] Horan, R.L., Adam, L.K.A., Wang, Y., Huang, J., Moreau, J.E., Kaplan, D.L., Altman, G.H., 2005. In vitro degradation of silk fibroin. Biomaterials, 26(17):3385-3393.
[9] Jiang, W.G., Harding, K.G., 1998. Enhancement of wound tissue expansion and angiogenisis by matrix-embedded fibroblast (Dermagraft), a role of hepatocyte growth factor/scatter factor. Int. J. Mol. Med., 2(2):203-210.
[10] Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V., Ferrara, N., 1989. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 246(4935):1306-1309.
[11] Li, M.Z., Wu, Z.Y., Lu, S.Z., Jia, S.X., Yao, M., 2001. Development of porous fibroin membrane and study of its properties. Silk, 13:10-13 (in Chinese).
[12] Lu, S.Z., Li, M.Z., Kang, N., Wu, Z.Y., 2000. Epoxide cross linker applied to preparation of fibroin membrane. Silk, 3:7-9 (in Chinese).
[13] Mauney, J.R., Nguyen, T., Gillen, K., Kirker-Head, C., Gimble, J.M., Kaplan, D.L., 2007. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials, 28(35):5280-5290.
[14] Meinel, L., Hofmann, S., Karageorgiou, V., Kirker-Head, C., McCool, J., Gronowicz, G., Zichner, L., Langer, R., Vunjak-Novakovic, G., Kaplan, D.L., 2005. The inflammatory responses to silk films in vitro and in vivo. Biomaterials, 26(2):147-155.
[15] Miao, J.C., Sheng, W.H., Li, M.Z., Xie, Y.F., Gong, A.H., Yang, J.C., 2007. Genotoxic potential of regenerated silk fibroin films by different cross-linking mode. Key Eng. Mat., 342-343:257-260 (in Chinese).
[16] Mori, H., Tsukada, M., 2000. New silk protein: modification of silk protein by gene engineering for production of biomaterials. Rev. Mol. Biotechnol., 74(2):95-103.
[17] Nangia, A., Hung, C.T., 1990. Laboratory evaluation of a new hydrogel-type skin substitute. Burns, 16(5):368-372.
[18] Neufelda, G., Cohena, T., Gengrinovitcha, S., Poltoraka, Z., 1999. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J., 13:9-22.
[19] Ning, L., Xue, M., Huang, H.N., 2000. Study on biocompatibility of skin reproductive membrane. Chin. J. Rep. Reconstr. Surg., 14(1):44-48 (in Chinese).
[20] Nissen, N.N., Polverini, P.J., Koch, A.E., Volin, M.V., Gamelli, R.L., Di Pietro, L.A., 1998. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am. J. Pathol., 152(6):1445-1452.
[21] Olofsson, B., Jeltsch, B., Eriksson, U., Alitalo, K., 1999. Current biology of VEGF-B and VEGF-C. Pharm. Biotechnol., 10:528-535.
[22] Pettersson, A., Nagy, J.A., Brown, L.F., Sundberg, C., Morgan, E., Jungles, S., Carter, R., Krieger, J.E., Manseau, E.J., Harvey, V.S., et al., 2000. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab. Invest., 80(1):99-115.
[23] Sheng, W.H., Gong, A.H., Li, M.Z., Xie, Y.F., Miao, J.C., Yang, J.C., Jiang, H.Y., Lu, S.Z., 2005. The study on cytotoxity of regenerated silk fibroin materials. Chin. J. Biomed. Eng., 24(3):277-281 (in Chinese).
[24] Unger, R.E., Wolf, M., Peters, K., Motta, A., Migliaresi, C., Kirkpatrick, C.J., 2004. Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering. Biomaterials, 25(6):1069-1075.
[25] Vepari, C., Kaplan, D.L., 2007. Silk as a biomaterial. Prog. Polym. Sci., 32(8-9):991-1007.
[26] Wang, Y., Blasioli, J.D., Kim, H.J., Kim, H.S., Kaplan, D.L., 2006a. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials, 27(25):4434-4442.
[27] Wang, Y., Kim, H.J., Vunjak-Novakovic, G., Kaplan, D.L., 2006b. Stem cell-based tissue engineering with silk biomaterials. Biomaterials, 27(36):6064-6082.
Open peer comments: Debate/Discuss/Question/Opinion
<1>