Full Text:   <2623>

CLC number: R541.7+3; Q25; Q46

On-line Access: 2012-09-04

Received: 2011-11-04

Revision Accepted: 2012-02-28

Crosschecked: 2012-08-09

Cited: 4

Clicked: 6488

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2012 Vol.13 No.9 P.676-694


Simulation of biatrial conduction via different pathways during sinus rhythm with a detailed human atrial model

Author(s):  Dong-dong Deng, Ying-lan Gong, Guo-fa Shou, Pei-feng Jiao, Heng-gui Zhang, Xue-song Ye, Ling Xia

Affiliation(s):  College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   xialing@zju.edu.cn

Key Words:  Cardiac electrophysiology, Conduction, Human atrial model, Modeling

Dong-dong Deng, Ying-lan Gong, Guo-fa Shou, Pei-feng Jiao, Heng-gui Zhang, Xue-song Ye, Ling Xia. Simulation of biatrial conduction via different pathways during sinus rhythm with a detailed human atrial model[J]. Journal of Zhejiang University Science B, 2012, 13(9): 676-694.

@article{title="Simulation of biatrial conduction via different pathways during sinus rhythm with a detailed human atrial model",
author="Dong-dong Deng, Ying-lan Gong, Guo-fa Shou, Pei-feng Jiao, Heng-gui Zhang, Xue-song Ye, Ling Xia",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Simulation of biatrial conduction via different pathways during sinus rhythm with a detailed human atrial model
%A Dong-dong Deng
%A Ying-lan Gong
%A Guo-fa Shou
%A Pei-feng Jiao
%A Heng-gui Zhang
%A Xue-song Ye
%A Ling Xia
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 9
%P 676-694
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100339

T1 - Simulation of biatrial conduction via different pathways during sinus rhythm with a detailed human atrial model
A1 - Dong-dong Deng
A1 - Ying-lan Gong
A1 - Guo-fa Shou
A1 - Pei-feng Jiao
A1 - Heng-gui Zhang
A1 - Xue-song Ye
A1 - Ling Xia
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 9
SP - 676
EP - 694
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100339

In order to better understand biatrial conduction, investigate various conduction pathways, and compare the differences between isotropic and anisotropic conductions in human atria, we present a simulation study of biatrial conduction with known/assumed conduction pathways using a recently developed human atrial model. In addition to known pathways: (1) Bachmann’s bundle (BB), (2) limbus of fossa ovalis (LFO), and (3) coronary sinus (CS), we also hypothesize that there exist two fast conduction bundles that connect the crista terminalis (CT), LFO, and CS. Our simulation demonstrates that use of these fast conduction bundles results in a conduction pattern consistent with experimental data. The comparison of isotropic and anisotropoic conductions in the BB case showed that the atrial working muscles had small effect on conduction time and conduction speed, although the conductivities assigned in anisotropic conduction were two to four times higher than the isotropic conduction. In conclusion, we suggest that the hypothesized intercaval bundles play a significant role in the biatrial conduction and that myofiber orientation has larger effects on the conduction system than the atrial working muscles. This study presents readers with new insights into human atrial conduction.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Anderson, K.R., Ho, S.Y., Anderson, R.H., 1979. Location and vascular supply of sinus node in human heart. Br. Heart J., 41(1):28-32.

[2]Anderson, R.H., Cook, A.C., 2007. The structure and components of the atrial chambers. Europace, 9(S6):vi3-vi9.

[3]Anderson, R.H., Ho, S.Y., Becker, A.E., 2000. Anatomy of the human atrioventricular junctions revisited. Anat. Rec., 260(1):81-91.

[4]Anderson, R.H., Yanni, J., Boyett, M.R., Chandler, N.J., Dobrzynski, H., 2009. The anatomy of the cardiac conduction system. Clin. Anat., 22(1):99-113.

[5]Blanc, O., Virag, N., Vesin, J.M., Kappenberger, L., 2001. A computer model of human atria with reasonable computation load and realistic anatomical properties. IEEE Trans. Biomed. Eng., 48(11):1229-1237.

[6]Boineau, J.P., 1985. Atrial flutter: a synthesis of concepts. Circulation, 72(2):249-257.

[7]Boineau, J.P., Schuessler, R.B., Hackel, D.B., Miller, C.B., Brockus, C.W., Wylds, A.C., 1980. Widespread distribution and rate differentiation of the atrial pacemaker complex. Am. J. Physiol., 239(3):H406-H415.

[8]Boineau, J.P., Canavan, T.E., Schuessler, R.B., Cain, M.E., Corr, P.B., Cox, J.L., 1988. Demonstration of a widely distributed atrial pacemaker complex in the human-heart. Circulation, 77(6):1221-1237.

[9]Bromberg, B.I., Hand, D.E., Schuessler, R.B., Boineau, J.P., 1995. Primary negativity does not predict dominant pacemaker location: implications for sinoatrial conduction. Am. J. Physiol., 269(3):H877-H887.

[10]Burashnikov, A., Mannava, S., Antzelevitch, C., 2004. Transmembrane action potential heterogeneity in the canine isolated arterially perfused right atrium: effect of Ikr and Ikur/Ito block. Am. J. Physiol., 286(6):H2393-H2400.

[11]Chandler, N.J., Greener, I.D., Tellez, J.O., Inada, S., Musa, H., Molenaar, P., Difrancesco, D., Baruscotti, M., Longhi, R., Anderson, R.H., et al., 2009. Molecular architecture of the human sinus node insights into the function of the cardiac pacemaker. Circulation, 119(12):1562-1575.

[12]Chauvin, M., Shah, D.C., Haissaguerre, M., Marcellin, L., Brechenmacher, C., 2000. The anatomic basis of connections between the coronary sinus musculature and the left atrium in humans. Circulation, 101(6):647-652.

[13]Cherry, E.M., Evans, S.J., 2008. Properties of two human atrial cell models in tissue: restitution, memory, propagation, and reentry. J. Theor. Biol., 254(3):674-690.

[14]Cherry, E.M., Hastings, H.M., Evans, S.J., 2008. Dynamics of human atrial cell models: restitution, memory, and intracellular calcium dynamics in single cells. Prog. Biophys. Mol. Biol., 98(1):24-37.

[15]Cosio, F.G., Martin-Penato, A., Pastor, A., Nunez, A., Montero, M.A., Cantale, C.P., Schames, S., 2004. Atrial activation mapping in sinus rhythm in the clinical electrophysiology laboratory: observations during Bachmann’s bundle block. J. Cardiovasc. Electrophysiol., 15(5):524-531.

[16]Courtemanche, M., Ramirez, R.J., Nattel, S., 1998. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol., 44(1):H301-H321.

[17]de Ponti, R., Ho, S.Y., Salerno-Uriarte, J.A., Tritto, M., Spadacini, G., 2002. Electroanatomic analysis of sinus impulse propagation in normal human atria. J. Cardiovasc. Electrophysiol., 13(1):1-10.

[18]Deng, D.D., Xia, L., 2010. Study the Effect of Tissue Heterogeneity and Anisotropy in Atrial Fibrillation Based on a Human Atrial Model. Computing in Cardiology, p.433-436.

[19]Deng, D., Jiao, P., Shou, G., Xia, L., 2009. Registering Myocardial Fiber Orientations with Heart Geometry Using Iterative Closest Points Algorithms. Medical Imaging, Parallel Processing of Images, and Optimization Techniques. Proc. SPIE, Yichang, China, p.74972P-74974P.

[20]Deng, D., Jiao, P., Ye, X., Xia, L., 2012. An image-based model of the whole human heart with detailed anatomical structure and fiber orientation. Comput. Math. Methods Med., 2012:16.

[21]Dolber, P.C., Spach, M.S., 1989. Structure of canine Bachmann’s bundle related to propagation of excitation. Am. J. Physiol., 257(5 Pt 2):H1446-H1457.

[22]Duytschaever, M., Danse, P., Eysbouts, S., Allessie, M., 2002. Is there an optimal pacing site to prevent atrial fibrillation? An experimental study in the chronically instrumented goat. J. Cardiovasc. Electrophysiol., 13(12):1264-1271.

[23]Everett, T.H.T., Wilson, E.E., Verheule, S., Guerra, J.M., Foreman, S., Olgin, J.E., 2006. Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: a comparison in canine models of structural and electrical atrial remodeling. Am. J. Physiol., 291(6):H2911-H2923.

[24]Fedorov, V.V., Glukhov, A.V., Chang, R., Kostecki, G., Aferol, H., Hucker, W.J., Wuskell, J.P., Loew, L.M., Schuessler, R.B., Moazami, N., et al., 2010. Optical mapping of the isolated coronary-perfused human sinus node. J. Am. Coll. Cardiol., 56(17):1386-1394.

[25]Feng, J.L., Yue, L.X., Wang, Z.G., Nattel, S., 1998. Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ. Res., 83(5):541-551.

[26]Gray, R.A., Pertsov, A.M., Jalife, J., 1996. Incomplete reentry and epicardial breakthrough patterns during atrial fibrillation in the sheep heart. Circulation, 94(10):2649-2661.

[27]Hansson, A., Holm, M., Blomstrom, P., Johansson, R., Luhrs, C., Brandt, J., Olsson, S.B., 1998. Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery. Eur. Heart J., 19(2):293-300.

[28]Harrild, D., Henriquez, C., 2000. A computer model of normal conduction in the human atria. Circ. Res., 87(7):E25-E36.

[29]Hayashi, H., Lux, R.L., Wyatt, R.F., Burgess, M.J., Abildskov, J.A., 1982. Relation of canine atrial activation sequence to anatomic landmarks. Am. J. Physiol., 242(3):H421-H428.

[30]Henriquez, C.S., Muzikant, A.L., Smoak, C.K., 1996. Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: simulations in a three-dimensional bidomain model. J. Cardiovasc. Electrophysiol., 7(5):424-444.

[31]Ho, S.Y., Sanchez-Quintana, D., 2009. The importance of atrial structure and fibers. Clin. Anat., 22(1):52-63.

[32]Ho, S.Y., Sanchez-Quintana, D., Cabrera, J.A., Anderson, R.H., 1999. Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol., 10(11):1525-1533.

[33]Ho, S.Y., Anderson, R.H., Sanchez-Quintana, D., 2002a. Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc. Res., 54(2):325-336.

[34]Ho, S.Y., Anderson, R.H., Sanchez-Quintana, D., 2002b. Gross structure of the atriums: more than an anatomic curiosity? Pacing Clin. Electrophysiol., 25(3):342-350.

[35]Hucker, W.J., Mccain, M.L., Laughner, J.I., Iaizz, P.A., Efimov, I.R., 2008. Connexin 43 expression delineates two discrete pathways in the human atrioventricular junction. Anat. Rec., 291(2):204-215.

[36]Jacquemet, V., Virag, N., Ihara, Z., Dang, L., Blanc, O., Zozor, S., Vesin, J.M., Kappenberger, L., Henriquez, C., 2003. Study of unipolar electrogram morphology in a computer model of atrial fibrillation. J. Cardiovasc. Electrophysiol., 14(10):S172-S179.

[37]James, T.N., 2002. Structure and function of the sinus node, AV node and his bundle of the human heart: Part I—structure. Prog. Cardiovasc. Dis., 45(3):235-267.

[38]Jurkko, R., 2009. Atrial Electric Signal During Sinus Rhythm in Lone Paroxysmal Atrial Fibrillation. PhD Thesis, Helsinki University Central Hospital, Helsinki, p.1-108.

[39]Jurkko, R., Mantynen, V., Tapanainen, J.M., Montonen, J., Vaananen, H., Parikka, H., Toivonen, L., 2009. Non-invasive detection of conduction pathways to left atrium using magnetocardiography: validation by intra-cardiac electroanatomic mapping. Europace, 11(2):169-177.

[40]Jurkko, R., Mantynen, V., Lehto, M., Tapanainen, J.M., Montonen, J., Parikka, H., Toivonen, L., 2010. Interatrial conduction in patients with paroxysmal atrial fibrillation and in healthy subjects. Int. J. Cardiol., 145(3):455-460.

[41]Kamkin, A., Kiseleva, I., Isenberg, G., Wagner, K.D., Gunther, J., Theres, H., Scholz, H., 2003. Cardiac fibroblasts and the mechano-electric feedback mechanism in healthy and diseased hearts. Prog. Biophys. Mol. Biol., 82(1-3):111-120.

[42]Khaja, A., Flaker, G., 2005. Bachmann’s bundle: does it play a role in atrial fibrillation? Pacing Clin. Electrophysiol., 28(8):855-863.

[43]Kojodjojo, P., Kanagaratnam, P., Markides, V., Davies, W., Peters, N., 2006. Age-related changes in human left and right atrial conduction. J. Cardiovasc. Electrophysiol., 17(2):120-127.

[44]Koura, T., Hara, M., Takeuchi, S., Ota, K., Okada, Y., Miyoshi, S., Watanabe, A., Shiraiwa, K., Mitamura, H., Kodama, I., et al., 2002. Anisotropic conduction properties in canine atria analyzed by high-resolution optical mapping: preferential direction of conduction block changes from longitudinal to transverse with increasing age. Circulation, 105(17):2092-2098.

[45]Lemery, R., Guiraudon, G., Veinot, J.P., 2003. Anatomic description of Bachmann’s bundle and its relation to the atrial septum. Am. J. Cardiol., 91(12):1482-1485.

[46]Lemery, R., Soucie, L., Martin, B., Tang, A.S.L., Green, M., Healey, J., 2004. Human study of biatrial electrical coupling-determinants of endocardial septal activation and conduction over interatrial connections. Circulation, 110(15):2083-2089.

[47]Lemery, R., Birnie, D., Tang, A.S., Green, M., Gollob, M., Hendry, M., Lau, E., 2007. Normal atrial activation and voltage during sinus rhythm in the human heart: an endocardial and epicardial mapping study in patients with a history of atrial fibrillation. J. Cardiovasc. Electrophysiol., 18(4):402-408.

[48]Lorange, M., Gulrajani, R.M., 1993. A computer heart model incorporating anisotropic propagation. I. Model construction and simulation of normal activation. J. Electrocardiol., 26(4):245-261.

[49]Lu, W.X., Xu, Z.Y., Fu, Y.J., 1993. Microcomputer-based cardiac field simulation-model. Med. Biol. Eng. Comput., 31(4):384-387.

[50]Maleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., 2009. K+ current changes account for the rate dependence of the action potential in the human atrial myocyte. Am. J. Physiol. Heart Circ. Physiol., 297(4):H1398-H1410.

[51]Markides, V., Schilling, R.J., Ho, S.Y., Chow, A.W., Davies, D.W., Peters, N.S., 2003. Characterization of left atrial activation in the intact human heart. Circulation, 107(5):733-739.

[52]Matsuyama, T., Ishibashi-Ueda, H., Ikeda, Y., Yamada, Y., Okamura, H., Noda, T., Satomi, K., Suyama, K., Shimizu, W., Aihara, N., et al., 2010. The positional relationship between the coronary sinus musculature and the atrioventricular septal junction. Europace, 12(5):719-725.

[53]Nygren, A., Fiset, C., Firek, L., Clark, J.W., Lindblad, D.S., Clark, R.B., Giles, W.R., 1998. Mathematical model of an adult human atrial cell-the role of K+ currents in repolarization. Circ. Res., 82(1):63-81.

[54]Rijcken, J., Bovendeerd, P.H.M., Schoofs, A.J.G., van Campen, D.H., Arts, T., 1999. Optimization of cardiac fiber orientation for homogeneous fiber strain during ejection. Ann. Biomed. Eng., 27(3):289-297.

[55]Rohmer, D., Sitek, A., Gullberg, G.T., 2007. Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Invest. Radiol., 42(11):777-789.

[56]Roithinger, F.X., Cheng, J., Sippensgroenewegen, A., Lee, R.J., Saxon, L.A., Scheinman, M.M., Lesh, M.D., 1999. Use of electroanatomic mapping to delineate transseptal atrial conduction in humans. Circulation, 100(17):1791-1797.

[57]Sachse, F.B., Werner, C.D., Stenroos, M.H., Schulte, R.F., Zerfass, P., Dössel, O., 2000. Modeling the Anatomy of the Human Heart Using the Cryosection Images of the Visible Female Dataset. Proc. 3rd Users Conference of the National Library of Medicine’s Visible Human Project. Bethesda, USA.

[58]Sanchez-Quintana, D., Anderson, R.H., Cabrera, J.A., Climent, V., Martin, R., Farre, J., Ho, S.Y., 2002. The terminal crest: morphological features relevant to electrophysiology. Heart, 88(4):406-411.

[59]Saremi, F., Channual, S., Krishnan, S., Gurudevan, S.V., Narula, J., Abolhoda, A., 2008. Bachmann bundle and its arterial supply: imaging with multidetector CT— implications for interatrial conduction abnormalities and arrhythmias. Radiology, 248(2):447-457.

[60]Seemann, G., Hoper, C., Sachse, F.B., Dossel, O., Holden, A.V., Zhang, H., 2006. Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philos. Transact. A: Math Phys. Eng. Sci., 364(1843):1465-1481.

[61]Sun, H., Khoury, D.S., 2001. Electrical conduits within the inferior atrial region exhibit preferential roles in interatrial activation. J. Electrocardiol., 34(1):1-14.

[62]Tanaka, K., Zlochiver, S., Vikstrom, K.L., Yamazaki, M., Moreno, J., Klos, M., Zaitsev, A.V., Vaidyanathan, R., Auerbach, D.S., Landas, S., et al., 2007. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ. Res., 101(8):839-847.

[63]Tapanainen, J.M., Jurkko, R., Holmqvist, F., Husser, D., Kongstad, O., Makijarvi, M., Toivonen, L., Platonov, P.G., 2009. Interatrial right-to-left conduction in patients with paroxysmal atrial fibrillation. J. Interv. Card. Electrophysiol., 25(2):117-122.

[64]Tellez, J.O., Dobrzynski, H., Greener, I.D., Graham, G.M., Laing, E., Honjo, H., Hubbard, S.J., Boyett, M.R., Billeter, R., 2006. Differential expression of ion channel transcripts in atrial muscle and sinoatrial node in rabbit. Circ. Res., 99(12):1384-1393.

[65]ten Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V., 2004. A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol., 286(4):H1573-H1589.

[66]Wang, K., Ho, S.Y., Gibson, D.G., Anderson, R.H., 1995. Architecture of atrial musculature in humans. Br. Heart J., 73(6):559-565.

[67]Whiteley, J.P., 2006. An efficient numerical technique for the solution of the monodomain and bidomain equations. IEEE Trans. Biomed. Eng., 53(11):2139-2147.

[68]Wu, T.J., Yashima, M., Xie, F., Athill, C.A., Kim, Y.H., Fishbein, M.C., Qu, Z., Garfinkel, A., Weiss, J.N., Karagueuzian, H.S., et al., 1998. Role of pectinate muscle bundles in the generation and maintenance of intra-atrial reentry: potential implications for the mechanism of conversion between atrial fibrillation and atrial flutter. Circ. Res., 83(4):448-462.

[69]Zhang, H., Holden, A.V., Kodama, I., Honjo, H., Lei, M., Varghese, T., Boyett, M.R., 2000. Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. Am. J. Physiol. Heart Circ. Physiol., 279(1):H397-H421.

[70]Zozor, S., Blanc, O., Jacquemet, V., Virag, N., Vesin, J.M., Pruvot, E., Kappenberger, L., Henriquez, C., 2003. A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary geometry. IEEE Trans. Biomed. Eng., 50(4):412-420.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE