CLC number: R541.75
On-line Access: 2012-09-04
Received: 2012-04-05
Revision Accepted: 2012-07-02
Crosschecked: 2012-07-12
Cited: 11
Clicked: 5894
Kai Jiang, Chao Huang, Shu-ming Ye, Hang Chen. High accuracy in automatic detection of atrial fibrillation for Holter monitoring[J]. Journal of Zhejiang University Science B, 2012, 13(9): 751-756.
@article{title="High accuracy in automatic detection of atrial fibrillation for Holter monitoring",
author="Kai Jiang, Chao Huang, Shu-ming Ye, Hang Chen",
journal="Journal of Zhejiang University Science B",
volume="13",
number="9",
pages="751-756",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200107"
}
%0 Journal Article
%T High accuracy in automatic detection of atrial fibrillation for Holter monitoring
%A Kai Jiang
%A Chao Huang
%A Shu-ming Ye
%A Hang Chen
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 9
%P 751-756
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200107
TY - JOUR
T1 - High accuracy in automatic detection of atrial fibrillation for Holter monitoring
A1 - Kai Jiang
A1 - Chao Huang
A1 - Shu-ming Ye
A1 - Hang Chen
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 9
SP - 751
EP - 756
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200107
Abstract: atrial fibrillation (AF) has been considered as a growing epidemiological problem in the world, with a substantial impact on morbidity and mortality. Ambulatory electrocardiography (e.g., Holter) monitoring is commonly used for AF diagnosis and therapy and the automated detection of AF is of great significance due to the vast amount of information provided. This study presents a combined method to achieve high accuracy in AF detection. Firstly, we detected the suspected transitions between AF and sinus rhythm using the delta RR interval distribution difference curve, which were then classified by a combination analysis of P wave and RR interval. The MIT-BIH AF database was used for algorithm validation and a high sensitivity and a high specificity (98.2% and 97.5%, respectively) were achieved. Further, we developed a dataset of 24-h paroxysmal AF Holter recordings (n=45) to evaluate the performance in clinical practice, which yielded satisfactory accuracy (sensitivity=96.3%, specificity=96.8%).
[1]Babaeizadeh, S., Gregg, R.E., Helfenbein, E.D., Lindauer, J.M., Zhou, S.H., 2009. Improvements in atrial fibrillation detection for real-time monitoring. J. Electrocardiol., 42(6):522-526.
[2]Budeus, M., Hennersdorf, M., Perings, C., Strauer, B.E., 2003. Detection of atrial late potentials with P wave signal averaged electrocardiogram among patients with paroxysmal atrial fibrillation. Z. Kardiol., 92(5):362-369 (in German).
[3]Chugh, S.S., Blackshear, J.L., Shen, W.K., Hammill, S.C., Gersh, B.J., 2001. Epidemiology and natural history of atrial fibrillation: clinical implications. J. Am. Coll. Cardiol., 37(2):371-378.
[4]Couceiro, R., Carvalho, P., Henriques, J., Antunes, M., Harris, M., Habetha, J., 2008. Detection of Atrial Fibrillation Using Model-Based ECG Analysis. 19th International Conference on Pattern Recognition. Vols. 1-6, p.2225-2229, 4005.
[5]Dash, S., Chon, K.H., Lu, S., Raeder, E.A., 2009. Automatic real time detection of atrial fibrillation. Ann. Biomed. Eng., 37(9):1701-1709.
[6]Duverney, D., Gaspoz, J.M., Pichot, V., Roche, F., Brion, R., Antoniadis, A., Barthelemy, J.C., 2002. High accuracy of automatic detection of atrial fibrillation using wavelet transform of heart rate intervals. Pace-Pacing Clin. Electrophysiol., 25(4):457-462.
[7]Fukunami, M., Yamada, T., Ohmori, M., Kumagai, K., Umemoto, K., Sakai, A., Kondoh, N., Minamino, T., Hoki, N., 1991. Detection of patients at risk for paroxysmal atrial-fibrillation during sinus rhythm by P-wave triggered signal-averaged electrocardiogram. Circulation, 83(1):162-169.
[8]Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E., 2000. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23):E215-E220.
[9]Huang, C., Ye, S.M., Chen, H., Li, D.L., He, F.T., Tu, Y.W., 2011. A novel method for detection of the transition between atrial fibrillation and sinus rhythm. IEEE Trans. Biomed. Eng., 58(4):1113-1119.
[10]Humphries, K.H., Kerr, C.R., Connolly, S.J., Klein, G., Boone, J.A., Green, M., Sheldon, R., Talajic, M., Dorian, P., Newman, D., 2001. New-onset atrial fibrillation—sex differences in presentation, treatment, and outcome. Circulation, 103(19):2365-2370.
[11]Kaufman, E.S., Waldo, A.L., 2004. The impact of asymptomatic atrial fibrillation. J. Am. Coll. Cardiol., 43(1):53-54.
[12]Levy, S., Breithardt, G., Campbell, R.W., Camm, A.J., Daubert, J.C., Allessie, M., Aliot, E., Capucci, A., Cosio, F., Crijns, H., et al., 1998. Atrial fibrillation: current knowledge and recommendations for management. Working Group on Arrhythmias of the European Society of Cardiology. Eur. Heart J., 19(9):1294-1320.
[13]Moody, G.B., Mark, R.G., 1983. A new method for detecting atrial fibrillation using R-R intervals. Comput. Cardiol., 10:227-230.
[14]Opolski, G., Scislo, P., Stanislawska, J., Gorecki, A., Steckiewicz, R., Torbicki, A., 1997. Detection of patients at risk for recurrence of atrial fibrillation after successful electrical cardioversion by signal-averaged P-wave ECG. Int. J. Cardiol., 60(2):181-185.
[15]Page, R.L., Tilsch, T.W., Connolly, S.J., Schnell, D.J., Marcello, S.R., Wilkinson, W.E., Pritchett, E.L.C., Arrhyth, A.S., 2003. Asymptomatic or “silent” atrial fibrillation. Frequency in untreated patients and patients receiving azimilide. Circulation, 107(8):1141-1145.
[16]Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1992. Numerical Recipes in C: The Art of Scientific Computing, 2nd Ed. Cambridge University Press, p.623-628.
[17]Roche, F.D.R., Gaspoz, J.M., da Costa, A., Isaaz, K., Duverney, D., Pichot, V., Costes, F., Lacour, J.R., Barthelemy, J.C., 2002. Frequent and prolonged asymptomatic episodes of paroxysmal atrial fibrillation revealed by automatic long-term event recorders in patients with a negative 24-hour Holter. Pace-Pacing Clin. Electrophysiol., 25(11):1587-1593.
[18]Schaer, B.A., Zellweger, M.J., Cron, T.A., Kaiser, C.A., Osswald, S., 2004. Value of routine Holter monitoring for the detection of paroxysmal atrial fibrillation in patients with cerebral ischemic events. Stroke, 35(3):68-70.
[19]Sun, Y., Chan, K.L., Krishnan, S.M., 2005. Characteristic wave detection in ECG signal using morphological transform. BMC Cardiovasc. Disord., 5(1):28.
[20]Tateno, K., Glass, L., 2001. Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and delta RR intervals. Med. Biol. Eng. Comput., 39(6):664-671.
[21]Wolf, P.A., Dawber, T.R., Thomas, H.E., Kannel, W.B., 1978. Epidemiologic assessment of chronic atrial-fibrillation and risk of stroke: the Framingham study. Neurology, 28(10):973-977.
Open peer comments: Debate/Discuss/Question/Opinion
<1>