CLC number: P49
On-line Access: 2013-01-31
Received: 2012-06-14
Revision Accepted: 2012-10-15
Crosschecked: 2013-01-13
Cited: 7
Clicked: 5764
Li-wen Zhang, Jing-feng Huang, Rui-fang Guo, Xin-xing Li, Wen-bo Sun, Xiu-zhen Wang. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data[J]. Journal of Zhejiang University Science B, 2013, 14(2): 144-161.
@article{title="Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data",
author="Li-wen Zhang, Jing-feng Huang, Rui-fang Guo, Xin-xing Li, Wen-bo Sun, Xiu-zhen Wang",
journal="Journal of Zhejiang University Science B",
volume="14",
number="2",
pages="144-161",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200169"
}
%0 Journal Article
%T Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data
%A Li-wen Zhang
%A Jing-feng Huang
%A Rui-fang Guo
%A Xin-xing Li
%A Wen-bo Sun
%A Xiu-zhen Wang
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 2
%P 144-161
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200169
TY - JOUR
T1 - Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data
A1 - Li-wen Zhang
A1 - Jing-feng Huang
A1 - Rui-fang Guo
A1 - Xin-xing Li
A1 - Wen-bo Sun
A1 - Xiu-zhen Wang
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 2
SP - 144
EP - 161
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200169
Abstract: The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (Ta) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for Ta estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed Ta based on MODIS land surface temperature (LST) data. The verification results of maximum Ta, minimum Ta, GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001–2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale.
[1]Boschetti, M., Stroppiana, D., Brivio, P.A., Bocchi, S., 2009. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens., 30(18):4643-4662.
[2]Coops, N., Duro, D., Wulder, M., Han, T., 2007. Estimating afternoon MODIS land surface temperatures (LST) based on morning MODIS overpass, location and elevation information. Int. J. Remote Sens., 28(10):2391-2396.
[3]Cristóbal, J., Ninyerola, M., Pons, X., 2008. Modeling air temperature through a combination of remote sensing and GIS data. J. Geophys. Res., 113(D13):D13106.
[4]Crosson, W.L., Al-Hamdan, M.Z., Hemmings, S.N.J., Wade, G.M., 2012. A daily merged MODIS Aqua-Terra land surface temperature data set for the conterminous United States. Remote Sens. Environ., 119:315-324.
[5]de Beurs, K.M., Henebry, G.M., 2004. Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ., 89(4):497-509.
[6]de Beurs, K.M., Henebry, G.M., 2010. Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology. Phenological Research: Methods for Environmental and Climate Change Analysis. London, Springer, p.177-208.
[7]Florio, E., Lele, S., Chang, Y., Sterner, R., Glass, G., 2004. Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature: a statistical approach. Int. J. Remote Sens., 25(15):2979-2994.
[8]Gordon, R., Bootsma, A., 1993. Analyses of growing degree-days for agriculture in Atlantic Canada. Clim. Res., 3:169-176.
[9]Hassan, Q.K., Bourque, C., Meng, F.R., Richards, W., 2007a. Spatial mapping of growing degree days: an application of MODIS-based surface temperatures and enhanced vegetation index. J. Appl. Remote Sens., 1(1):013511.
[10]Hassan, Q.K., Bourque, C.P.A., Meng, F.R., 2007b. Application of Landsat-7 ETM+ and MODIS products in mapping seasonal accumulation of growing degree days at an enhanced resolution. J. Appl. Remote Sens., 1(1):013539.
[11]Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83(1-2):195-213.
[12]Islam, M., Sikder, S., 2011. Phenology and degree days of rice cultivars under organic culture. Bangladesh J. Bot., 40(2):149-153.
[13]Ke, L., Wang, Z., Song, C., Lu, Z., 2011. Reconstruction of MODIS LST time series and comparison with land surface temperature (T) among observation stations in the Northeast Qinghai-Tibet plateau. Prog. Geogr., 30(7):819-826 (in Chinese).
[14]Li, F., Wang, C., Zhao, J., Zheng, J., 2010. The spatialization of multi-year average accumulated temperature in China. J. Nat. Resour., 25(5):778-783 (in Chinese).
[15]Li, J., Wang, X., Ma, W., Zhang, H., 2009. Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecol. Complex, 6(4):413-420.
[16]Liu, J., Wang, Z., Chen, M., Shi, K., Liang, T., Zhang, B., Zhou, F., Chang, J., 2011. Temporal and spatial variation characteristics of effective accumulated temperature in Northeast China during 1951-2007. J. Anhui Agric. Sci., 39(25):15655-15656, 15680 (in Chinese).
[17]Lu, L., Venus, V., Skidmore, A., Wang, T., Luo, G., 2011. Estimating land-surface temperature under clouds using MSG/SEVIRI observations. Int. J. Appl. Earth Obs. Geoinform., 13(2):265-276.
[18]McMaster, G.S., Wilhelm, W., 1997. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol., 87(4):291-300.
[19]Morrison, M., McVetty, P., Shaykewich, C., 1989. The determination and verification of a baseline temperature for the growth of Westar summer rape. Can. J. Plant. Sci., 69(2):455-464.
[20]Mostovoy, G.V., King, R.L., Reddy, K.R., Kakani, V.G., Filippova, M.G., 2006. Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi. GISci. Remote Sens., 43(1):78-110.
[21]Neteler, M., 2010. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens., 2(1):333-351
[22]Sarma, A., Kumar, T.V.L., Koteswararao, K., 2008. Development of an agroclimatic model for the estimation of rice yield. J. Ind. Geophys. Union, 12(2):89-96.
[23]Shen, S., Leptoukh, G.G., 2011. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environ. Res. Lett., 6(4):045206.
[24]Sun, H., Huang, J., Huete, A.R., Peng, D., Zhang, F., 2009. Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China. J. Zhejiang Univ.-Sci. A (Appl. Phys. & Eng.), 10(10):1509-1522.
[25]Teal, R., Girma, B., Freeman, K., Arnall, K., Walsh, D.O., Raun, W., 2006. In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron. J., 98(6):1488.
[26]Vancutsem, C., Ceccato, P., Dinku, T., Connor, S.J., 2010. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ., 114(2):449-465.
[27]Vina, A., Gitelson, A.A., Rundquist, D.C., Keydan, G.P., Leavitt, B., Schepers, J., 2004. Monitoring maize (Zea mays L.) phenology with remote sensing. Agron. J., 96(4):1139-1147.
[28]Wan, Z., 2007. Collection-5 MODIS Land Surface Temperature Products Users’ Guide. ICESS, University of California, Santa Barbara.
[29]Wang, J., Price, K., Rich, P., 2001. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. J. Appl. Remote Sens., 22(18):3827-3844.
[30]Yang, W., Yang, L., Merchant, J., 1997. An assessment of AVHRR/NDVI-ecoclimatological relations in Nebraska, USA. J. Appl. Remote Sens., 18(10):2161-2180.
[31]Ye, Q., Yang, X., Li, Y., Dai, S., Xiao, J., 2011. Changes of China agricultural climate resources under the background of climate change. VIII. Change characteristics of heat resources during the growth period of double cropping rice in Jiangxi Province. Chin. J. Appl. Ecol., 22(8):2021-2030 (in Chinese).
[32]Zhang, W., Huang, Y., Yu, Y., Sun, W., 2011. Empirical models for estimating daily maximum, minimum and mean air temperatures with MODIS land surface temperatures. Int. J. Remote Sens., 32(24):9415-9440.
[33]Zorer, R., Rocchini, D., Delucchi, L., Zottele, F., Meggio, F., Neteler, M., 2011. Use of Multi-annual MODIS Land Surface Temperature Data for the Characterization of the Heat Requirements for Grapevine Varieties. 2011 6th International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Multi-Temp 2011-Proceedings. IEEE Computer Society, Trento, Italy, p.225-228.
Open peer comments: Debate/Discuss/Question/Opinion
<1>