Full Text:   <3160>

Summary:  <2013>

CLC number: R392.11

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-04-19

Cited: 0

Clicked: 4999

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.5 P.410-420

http://doi.org/10.1631/jzus.B1600139


Antibacterial mechanism of high-mobility group nucleosomal-binding domain 2 on the Gram-negative bacteria Escherichia coli


Author(s):  Heng Li, Xiao-fei Shen, Xin-e Zhou, Yan-e Shi, Lu-xia Deng, Yi Ma, Xiao-ying Wang, Jing-yu Li, Ning Huang

Affiliation(s):  Research Unit of Infection and Immunity, Sichuan University, Chengdu 610041, China; more

Corresponding email(s):   xiaohuer1000@126.com, Ning_Huang741@163.com

Key Words:  High-mobility group nucleosomal-binding domain 2 (HMGN2), Bioactivity, Membrane permeability, Biofilm, Chemotactic activity


Heng Li, Xiao-fei Shen, Xin-e Zhou, Yan-e Shi, Lu-xia Deng, Yi Ma, Xiao-ying Wang, Jing-yu Li, Ning Huang. Antibacterial mechanism of high-mobility group nucleosomal-binding domain 2 on the Gram-negative bacteria Escherichia coli[J]. Journal of Zhejiang University Science B, 2017, 18(5): 410-420.

@article{title="Antibacterial mechanism of high-mobility group nucleosomal-binding domain 2 on the Gram-negative bacteria Escherichia coli",
author="Heng Li, Xiao-fei Shen, Xin-e Zhou, Yan-e Shi, Lu-xia Deng, Yi Ma, Xiao-ying Wang, Jing-yu Li, Ning Huang",
journal="Journal of Zhejiang University Science B",
volume="18",
number="5",
pages="410-420",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600139"
}

%0 Journal Article
%T Antibacterial mechanism of high-mobility group nucleosomal-binding domain 2 on the Gram-negative bacteria Escherichia coli
%A Heng Li
%A Xiao-fei Shen
%A Xin-e Zhou
%A Yan-e Shi
%A Lu-xia Deng
%A Yi Ma
%A Xiao-ying Wang
%A Jing-yu Li
%A Ning Huang
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 5
%P 410-420
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600139

TY - JOUR
T1 - Antibacterial mechanism of high-mobility group nucleosomal-binding domain 2 on the Gram-negative bacteria Escherichia coli
A1 - Heng Li
A1 - Xiao-fei Shen
A1 - Xin-e Zhou
A1 - Yan-e Shi
A1 - Lu-xia Deng
A1 - Yi Ma
A1 - Xiao-ying Wang
A1 - Jing-yu Li
A1 - Ning Huang
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 5
SP - 410
EP - 420
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600139


Abstract: 
Objective: To investigate the antibacterial mechanism of high-mobility group nucleosomal-binding domain 2 (HMGN2) on Escherichia coli K12, focusing on the antibacterial and antibiofilm formation effects. Its chemotactic activity on human neutrophils was also investigated. Methods: Human tissue-derived HMGN2 (tHMGN2) was extracted from fresh uterus fiber cystadenoma and purified by HP1100 reversed-phase high-performance liquid chromatography (RP-HPLC). Recombinant human HMGN2 (rHMGN2) was generated in E. coli DE3 carrying PET-32a-c(+)-HMGN2. Antibacterial activity of HMGN2 was determined using an agarose diffusion assay and minimum inhibitory concentration (MIC) of HMGN2 was determined by the microdilution broth method. Bacterial membrane permeability assay and DNA binding assay were performed. The antibiofilm effect of HMGN2 was investigated using a crystal violet assay and electron microscopy scanning. The activating effect and chemotactic activity of HMGN2 on neutrophils were determined using a nitroblue tetrazolium (NBT) reduction assay and Transwell chamber cell migration assay, respectively. Results: HMGN2 showed a relatively high potency against Gram-negative bacteria E. coli and the MIC of HMGN2 was 16.25 μg/ml. Elevated bacterial membrane permeability was observed in HMGN2-treated E. coli K12. HMGN2 could also bind the bacterial plasmid and genomic DNA in a dose-dependent manner. The antibiofilm effect of HMGN2 on E. coli K12 was confirmed by crystal violet staining and scanning electron microscopy. However, the activating effects and chemotactic effects of HMGN2 on human neutrophils were not observed. Conclusions: As an antimicrobial peptide (AMP), HMGN2 possessed a good capacity for antibacterial and antibiofilm activities on E. coli K12. This capacity might be associated with disruption of the bacterial membrane and combination of DNA, which might affect the growth and viability of E. coli.

高迁移率族蛋白N2(HMGN2)对革兰氏阴性大肠埃希菌的抗菌机制研究

目的:报道高迁移率族蛋白N2(HMGN2)对大肠埃希菌(Escherichia coli)K12的抗菌功能,并对其抗菌机制进行探讨,同时检验HMGN2对中性粒细胞是否具有趋化活性。
创新点:从分子水平上探讨了HMGN2对大肠埃希菌的抗菌机制。
方法:用反相高效液相色谱法从人类子宫纤维囊腺瘤中提取组织细胞的HMGN2分子(tHMGN2)。诱导重组表达质粒PET-32a-c(+)-HMGN2表达重组蛋白HMGN2(rHMGN2)。用琼脂糖凝胶弥散法对HMGN2的抗菌活性进行检测,并用微量肉汤稀释法测定HMGN2的最小抑菌浓度(MIC)。通过膜通透性实验和凝胶阻滞实验检测HMGN2 对细菌菌膜和核酸的作用。通过结晶紫实验和电镜扫描验证HMGN2的抗生物被膜形成作用。通过氮蓝四唑(NBT)法和Transwell趋化法分别验证HMGN2的活化效应和对中性粒细胞的趋化活性。
结果:我们分离纯化获得了高质量的天然和重组HMGN2分子,同时验证了HMGN2对革兰氏阴性大肠埃希菌具有较强的抗菌活性,MIC为16.25 µg/ml。细菌膜通透性实验发现HMGN2使大肠埃希菌膜渗透性明显增大。HMGN2分子与大肠埃希菌K12染色体DNA和质粒DNA的结合均呈浓度依赖效应。银染和扫描电镜结果显示,HMGN2与大肠埃希菌共培养可干扰细菌生物被膜形成,并破坏已形成的早期和成熟生物被膜。然而HMGN2对中性粒细胞没有活化作用和趋化作用。
结论:作为抗菌肽,HMGN2对大肠埃希菌有良好的抗菌活性。该活性可能通过影响细胞膜的通透性和干扰细菌DNA转录以及干扰生物被膜而发挥作用。

关键词:高迁移率族蛋白N2(HMGN2);膜通透性;生物被膜;趋化作用

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bolintineanu, D., Hazrati, E., Davis, H.T., et al., 2010. Antimicrobial mechanism of pore-forming protegrin peptides: 100 pores to kill E. coli. Peptides, 31(1):1-8.

[2]Bratton, D.L., Henson, P.M., 2011. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol., 32(8):350-357.

[3]Brogden, K.A., 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 3(3):238-250.

[4]Cao, Y., Wu, G., Fan, B., et al., 2011. High mobility group nucleosomal binding domain 2 protein protects bladder epithelial cells from Klebsiella pneumoniae invasion. Biol. Pharm. bull., 34(7):1065-1071.

[5]Chen, H., Wang, B., Gao, D., et al., 2013. Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small, 9(16):2735-2746.

[6]Costerton, J.W., Stewart, P.S., Greenberg, E., 1999. Bacterial biofilms: a common cause of persistent infections. Science, 284(5418):1318-1322.

[7]Degryse, B., Resnati, M., Rabbani, S.A., et al., 1999. Src-dependence and pertussis-toxin sensitivity of urokinase receptor-dependent chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. Blood, 94(2): 649-662.

[8]Deng, L.X., Wu, G.X., Cao, Y., et al., 2011. The chromosomal protein HMGN2 mediates lipopolysaccharide-induced expression of β-defensins in A549 cells. FEBS J., 278(12): 2152-2166.

[9]Deng, L.X., Wu, G.X., Cao, Y., et al., 2012. The chromosomal protein HMGN2 mediates the LPS-induced expression of β-defensins in mice. Inflammation, 35(2):456-473.

[10]Feng, Y., Huang, N., Wu, Q., et al., 2005. HMGN2: a novel antimicrobial effector molecule of human mononuclear leukocytes? J. Leukoc. Biol., 78(5):1136-1141.

[11]Feng, Y., He, F., Zhang, P., et al., 2009. Inhibitory effect of HMGN2 protein on human hepatitis B virus expression and replication in the HepG2.2.15 cell line. Antivir. Res., 81(3):277-282.

[12]Furusawa, T., Cherukuri, S., 2010. Developmental function of HMGN proteins. BBA-Gene Regul. Mech., 1799(1):69-73.

[13]Hawkey, P.M., Jones, A.M., 2009. The changing epidemiology of resistance. J. Antimicorob. Chemoth., 64(Suppl. 1): i3-i10.

[14]Høiby, N., Bjarnsholt, T., Givskov, M., et al., 2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Ag., 35(4):322-332.

[15]Lai, Y., Gallo, R.L., 2009. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol., 30(3):131-141.

[16]Lehrer, R.I., Rosenman, M., Harwig, S.S., et al., 1991. Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods, 137(2):167-173.

[17]Liu, Y., Knapp, K.M., Yang, L., et al., 2013. High in vitro antimicrobial activity of β-peptoid-peptide hybrid oligomers against planktonic and biofilm cultures of Staphylococcus epidermidis. Int. J. Antimicrob. Ag., 41(1):20-27.

[18]Mitra, A., Palaniyandi, S., Herren, C.D., et al., 2013. Pleiotropic roles of uvrY on biofilm formation, motility and virulence in uropathogenic Escherichia coli CFT073. PLoS ONE, 8(2):e55492.

[19]O'Toole, G., Kaplan, H.B., Kolter, R., 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol., 54(1): 49-79.

[20]Park, B., Fikrig, S., Smithwick, E., 1968. Infection and nitroblue-tetrazolium reduction by neutrophils: a diagnostic aid. Lancet Oncol., 292(7567):532-534.

[21]Park, C.B., Kim, H.S., Kim, S.C., 1998. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Bioph. Res. Commun., 244(1):253-257.

[22]Reddy, K., Yedery, R., Aranha, C., 2004. Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Ag., 24(6):536-547.

[23]Reeves, R., 2010. Nuclear functions of the HMG proteins. BBA-Gene Regul. Mech., 1799(1):3-14.

[24]Rovere-Querini, P., Capobianco, A., Scaffidi, P., et al., 2004. HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep., 5(8):825-830.

[25]Sarda-Mantel, L., Saleh-Mghir, A., Welling, M., et al., 2007. Evaluation of 99mTc-UBI 29-41 scintigraphy for specific detection of experimental Staphylococcus aureus prosthetic joint infections. Eur. J. Nucl. Med. Mol. Imaging, 34(8): 1302-1309.

[26]Steinstraesser, L., Kraneburg, U., Jacobsen, F., et al., 2011. Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology, 216(3):322-333.

[27]Stewart, P.S., Costerton, J.W., 2001. Antibiotic resistance of bacteria in biofilms. Lancet, 358(9276):135-138.

[28]Tunc, O., Thompson, J., Tremellen, K., 2010. Development of the NBT assay as a marker of sperm oxidative stress. Int. J. Androl., 33(1):13-21.

[29]Wang, K., Yan, J., Dang, W., et al., 2014. Dual antifungal properties of cationic antimicrobial peptides polybia-MPI: membrane integrity disruption and inhibition of biofilm formation. Peptides, 56:22-29.

[30]Wang, L., Rao, C., Gao, K., et al., 2013. Development of a reference standard of Escherichia coli DNA for residual DNA determination in China. PLoS ONE, 8(9):e74166.

[31]Wiegand, I., Hilpert, K., Hancock, R.E., 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc., 3(2):163-175.

[32]Wu, G., Cao, Y., Fan, B., et al., 2011. High-mobility group protein N2 (HMGN2) inhibited the internalization of Klebsiella pneumoniae into cultured bladder epithelial cells. Acta Bioch. Bioph. Sin., 43(9):680-687.

[33]Xie, Y., Fleming, E., Chen, J.L., et al., 2011. Effect of proline position on the antimicrobial mechanism of buforin II. Peptides, 32(4):677-682.

[34]Yang, D., Postnikov, Y.V., Li, Y., et al., 2012. High-mobility group nucleosome-binding protein 1 acts as an alarmin and is critical for lipopolysaccharide-induced immune responses. J. Exp. Med., 209(1):157-171.

[35]Zanetti, M., 2004. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukocyte Biol., 75(1):39-48.

[36]Zhang, L., Wang, Y.W., Lu, Z.Q., 2015. Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(10):875-882.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE