Full Text:   <687>

Summary:  <137>

Suppl. Mater.: 

CLC number: X592; S365

On-line Access: 2017-10-05

Received: 2016-06-13

Revision Accepted: 2017-01-16

Crosschecked: 2017-09-15

Cited: 2

Clicked: 1338

Citations:  Bibtex RefMan EndNote GB/T7714


Shi-kai Fan


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.10 P.897-905


Effects of split applications of nitrogen fertilizers on the Cd level and nutritional quality of Chinese cabbage

Author(s):  Shi-kai Fan, Jun Zhu, Wen-hao Tian, Mei-yan Guan, Xian-zhi Fang, Chong-wei Jin

Affiliation(s):  College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   jincw@zju.edu.cn

Key Words:  Fertilization method, Cadmium (Cd), Nitrogen (N), Nutritional quality

Shi-kai Fan, Jun Zhu, Wen-hao Tian, Mei-yan Guan, Xian-zhi Fang, Chong-wei Jin. Effects of split applications of nitrogen fertilizers on the Cd level and nutritional quality of Chinese cabbage[J]. Journal of Zhejiang University Science B, 2017, 18(10): 897-905.

@article{title="Effects of split applications of nitrogen fertilizers on the Cd level and nutritional quality of Chinese cabbage",
author="Shi-kai Fan, Jun Zhu, Wen-hao Tian, Mei-yan Guan, Xian-zhi Fang, Chong-wei Jin",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Effects of split applications of nitrogen fertilizers on the Cd level and nutritional quality of Chinese cabbage
%A Shi-kai Fan
%A Jun Zhu
%A Wen-hao Tian
%A Mei-yan Guan
%A Xian-zhi Fang
%A Chong-wei Jin
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 10
%P 897-905
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600272

T1 - Effects of split applications of nitrogen fertilizers on the Cd level and nutritional quality of Chinese cabbage
A1 - Shi-kai Fan
A1 - Jun Zhu
A1 - Wen-hao Tian
A1 - Mei-yan Guan
A1 - Xian-zhi Fang
A1 - Chong-wei Jin
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 10
SP - 897
EP - 905
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600272

cadmium (Cd) contamination in soil is an increasingly serious problem. Management of plant nutrients has been proposed as a potentially promising strategy for minimizing Cd accumulation in crops grown in contaminated soil. This study investigated the effects of split applications of nitrogen (N) fertilizers on the Cd concentration in Chinese cabbage (Brassica chinensis L.) plants grown in Cd-contaminated soil. Compared with single applications, split applications of ammonium or urea resulted in significantly lower Cd concentrations, and higher biomass production and antioxidant-associated nutritional quality in the edible plant parts. However, when nitrate was used as the N fertilizer, there were no significant differences between the split and single applications for the same parameters. We conclude that a split application could be more beneficial than a single application method when ammonium or urea is used as the N fertilizer for vegetable cultivation in Cd-contaminated soil.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abu-Amsha, R., Croft, K.D., Puddey, I.B., et al., 1996. Phenolic content of various beverages determines the extent of inhibition of human serum and low-density lipoprotein oxidation in vitro: identification and mechanism of action of some cinnamic acid derivatives from red wine. Clin. Sci., 91(4):449-458.

[2]Bao, S.D., 2008. Soil Agro-chemistrical Analysis. China Agriculture Publishing House, Beijing, China, p.14-69 (in Chinese).

[3]Chen, W., Luo, J.K., Shen, Q.R., 2005. Effect of NH4+-N/NO3-N ratios on growth and some physiological parameters of Chinese cabbage cultivars. Pedosphere, 15(3):310-318.

[4]Clemens, S., Aarts, M.G.M., Thomine, S., et al., 2013. Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci., 18(2):92-99.

[5]Crawford, N.M., Glass, A.D.M., 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci., 3(10):389-395.

[6]de Ruijter, F.J., ten Berge, H.F.M., Smit, A.L., 2010. Strategies to increase nitrogen use efficiency and reduce nitrate leaching in vegetable production in the Netherlands. Acta Hortic., 852:107-114.

[7]Dheri, G.S., Brar, M.S., Malhi, S.S., 2007. Influence of phosphorus application on growth and cadmium uptake of spinach in two cadmium-contaminated soils. J. Plant Nutr. Soil Sci., 170(4):495-499.

[8]Dong, J., Mao, W.H., Zhang, G.P., et al., 2007. Root excretion and plant tolerance to cadmium toxicity—a review. Plant Soil Environ., 53(5):193-200.

[9]Florijn, P.J., Nelemans, J.A., van Beusichem, M.L., 1992. The influence of the form of nitrogen nutrition on uptake and distribution of cadmium in lettuce varieties. J. Plant Nutr., 15(11):2405-2416.

[10]Fraga, C.G., Motchnik, P.A., Shigenaga, M.K., et al., 1991. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc. Natl. Acad. Sci. USA, 88(24):11003-11006.

[11]Frankel, E.N., Waterhouse, A.L., Teissedre, P.L., 1995. Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agric. Food Chem., 43(4):890-894.

[12]Gillam, K.M., Zebarth, B.J., Burton, D.L., 2008. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration. Can. J. Soil Sci., 88(2):133-143.

[13]Hanneken, A., Lin, F.F., Johnson, J., et al., 2006. Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest. Ophth. Vis. Sci., 47(7):3164-3177.

[14]He, P., Lu, Y.H., Liang, Y.H., et al., 2013. Exposure assessment of dietary cadmium: findings from Shanghainese over 40 years, China. BMC Public Health, 13:590.

[15]Herman, D.J., Johnson, K.K., Jaeger, C.H., et al., 2006. Root influence on nitrogen mineralization and nitrification in Avena barbata rhizosphere soil. Soil Sci. Soc. Am. J., 70(5):1504-1511.

[16]Hinsinger, P., Plassard, C., Tang, C.X., et al., 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil, 248(1):43-59.

[17]Hurrell, R.F., 2003. Influence of vegetable protein sources on trace element and mineral bioavailability. J. Nutr., 133(9):2973s-2977s.

[18]Jin, C.W., Du, S.T., Wang, Y., et al., 2009. Carbon dioxide enrichment by composting in greenhouses and its effect on vegetable production. J. Plant Nutr. Soil Sci., 172(3):418-424.

[19]Jin, C.W., Liu, Y., Mao, Q.Q., et al., 2013. Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.). Food Chem., 138(4):2188-2194.

[20]Kirkham, M.B., 2006. Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137(1-2):19-32.

[21]Kurbacher, C.M., Wagner, U., Kolster, B., et al., 1996. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Lett., 103(2):183-189.

[22]López-Bellido, L., López-Bellido, R.J., Redondo, R., 2005. Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crop. Res., 94(1):86-97.

[23]Lotito, S.B., Frei, B., 2006. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radical Biol. Med., 41(12):1727-1746.

[24]Luo, B.F., Du, S.T., Lu, K.X., et al., 2012. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. J. Exp. Bot., 63(8):3127-3136.

[25]Lux, A., Martinka, M., Vaculik, M., et al., 2011. Root responses to cadmium in the rhizosphere: a review. J. Exp. Bot., 62(1):21-37.

[26]Mao, Q.Q., Guan, M.Y., Lu, K.X., et al., 2014. Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis. Plant Physiol., 166(2):934-944.

[27]Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., et al., 2002. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J., 32(4):539-548.

[28]Prince, W.S., Kumar, P.S., Doberschutz, K.D., et al., 2002. Cadmium toxicity in mulberry plants with special reference to the nutritional quality of leaves. J. Plant Nutr., 25(4):689-700.

[29]Sanchez-Moreno, C., 2002. Review: methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int., 8(3):121-137.

[30]Sarwar, N., Saifullah, Malhi, S.S., et al., 2010. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric., 90(6):925-937.

[31]Sempeho, S.I., Kim, H.T., Mubofu, E., et al., 2014. Meticulous overview on the controlled release fertilizers. Adv. Chem., 2014:1-16.

[32]Shaviv, A., 2001. Advances in controlled-release fertilizers. Adv. Agron., 71:1-49.

[33]Shyamala, B.N., Gupta, S., Lakshmi, A.J., et al., 2005. Leafy vegetable extracts—antioxidant activity and effect on storage stability of heated oils. Innov. Food Sci. Emerg., 6(2):239-245.

[34]Tsadilas, C.D., Karaivazoglou, N.A., Tsotsolis, N.C., et al., 2005. Cadmium uptake by tobacco as affected by liming, N form, and year of cultivation. Environ. Pollut., 134(2):239-246.

[35]Tudoreanu, L., Phillips, C.J.C., 2004. Modeling cadmium uptake and accumulation in plants. Adv. Agron., 84:121-157.

[36]Wei, B.G., Yang, L.S., 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from china. Microchem. J., 94(2):99-107.

[37]Zaccheo, P., Crippa, L., Pasta, V.D.M., 2006. Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower. Plant Soil, 283(1):43-56.

[38]Zerulla, W., Barth, T., Dressel, J., et al., 2001. 3,4-Dimethylpyrazole phosphate (DMPP)—a new nitrification inhibitor for agriculture and horticulture. Biol. Fert. Soils, 34(2):79-84.

[39]List of electronic supplementary materials

[40]Fig. S1 Effects of the N fertilization methods on soil pH

[41]Fig. S2 pH buffer capacity of the soil

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE