Full Text:   <932>

Summary:  <556>

CLC number: Q789

On-line Access: 2018-09-30

Received: 2017-12-06

Revision Accepted: 2018-03-02

Crosschecked: 2018-09-12

Cited: 0

Clicked: 2106

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jian-zhong Xu

https://orcid.org/0000-0003-0750-6875

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2018 Vol.19 No.10 P.739-749

10.1631/jzus.B1700594


Antisense RNA: the new favorite in genetic research


Author(s):  Jian-zhong Xu, Jun-lan Zhang, Wei-guo Zhang

Affiliation(s):  The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; more

Corresponding email(s):   xujianzhong@jiangnan.edu.cn

Key Words:  Antisense RNA, Formation mode, Regulatory mechanism, Application field, Genetic research


Share this article to: More |Next Article >>>

Jian-zhong Xu, Jun-lan Zhang, Wei-guo Zhang. Antisense RNA: the new favorite in genetic research[J]. Journal of Zhejiang University Science B, 2018, 19(1): 739-749.

@article{title="Antisense RNA: the new favorite in genetic research",
author="Jian-zhong Xu, Jun-lan Zhang, Wei-guo Zhang",
journal="Journal of Zhejiang University Science B",
volume="19",
number="10",
pages="739-749",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700594"
}

%0 Journal Article
%T Antisense RNA: the new favorite in genetic research
%A Jian-zhong Xu
%A Jun-lan Zhang
%A Wei-guo Zhang
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 10
%P 739-749
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer

TY - JOUR
T1 - Antisense RNA: the new favorite in genetic research
A1 - Jian-zhong Xu
A1 - Jun-lan Zhang
A1 - Wei-guo Zhang
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 10
SP - 739
EP - 749
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -


Abstract: 
antisense RNA molecule represents a unique type of DNA transcript that comprises 19–23 nucleotides and is complementary to mRNA. antisense RNAs play the crucial role in regulating gene expression at multiple levels, such as at replication, transcription, and translation. In addition, artificial antisense RNAs can effectively regulate the expression of related genes in host cells. With the development of antisense RNA, investigating the functions of antisense RNAs has emerged as a hot research field. This review summarizes our current understanding of antisense RNAs, particularly of the formation of antisense RNAs and their mechanism of regulating the expression of their target genes. In addition, we detail the effects and applications of antisense RNAs in antivirus and anticancer treatments and in regulating the expression of related genes in plants and microorganisms. This review is intended to highlight the key role of antisense RNA in genetic research and guide new investigators to the study of antisense RNAs.

反义RNA:遗传研究领域的新宠儿

概要:该综述较为全面地概述了当前反义RNA的研究现状,特别是它的形成模式以及参与调节目的基因的调节机制.同时,还概述了反义RNA在病毒和癌症治疗以及在遗传改造植物和微生物中的应用,为拟计划开展反义RNA研究的学者提供了指导.
关键词:反义RNA;形成模式;调节机制;应用领域;遗传研究

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Adams L, 2017. Non-coding RNA: pri-miRNA processing: structure is key. Nat Rev Genet, 18(3):145.

[2]Aida R, Kishimoto S, Tanaka Y, et al., 2000. Modification of flower color in torenia (Torenia fournieri Lind.) by genetic transformation. Plant Sci, 153(1):33-42.

[3]Appasani K, 2004. RNA interference technology in drug validation and development: RNomics approach. Pharmacogenomics, 5(1):19-23.

[4]Boland CR, 2017. Non-coding RNA: it’s not junk. Dig Dis Sci, 62(5):1107-1109.

[5]Bustin SA, Murphy J, 2013. RNA biomarkers in colorectal cancer. Methods, 59(1):116-125.

[6]Cavalli F, 2013. An appeal to world leaders: stop cancer now. Lancet, 381(9865):425-426.

[7]Creasey KM, Zhai JX, Borges F, et al., 2014. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature, 508(7496):411-415.

[8]Cullen BR, 2014. Viruses and RNA interference: issues and controversies. J Virol, 88(22):12934-12936.

[9]Day AG, Bejarano ER, Buck KW, et al., 1991. Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci USA, 88(15):6721-6725.

[10]Dodo HW, Konan KN, Chen FC, et al., 2008. Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J, 6(2):135-145.

[11]García-Rico RO, Martín JF, Fierro F, 2007. The pga1 gene of Penicillium chrysogenum NRRL 1951 encodes a heterotrimeric G protein alpha subunit that controls growth and development. Res Microbiol, 158(5):437-446.

[12]Ge Q, McManus MT, Nguyen T, et al., 2003. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci USA, 100(5):2718-2723.

[13]Haase AD, Fenoglio S, Muerdter F, et al., 2010. Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila. Genes Dev, 24(22):2499-2504.

[14]Hansen PL, Hjertholm P, Vedsted P, 2015. Increased diagnostic activity in general practice during the year preceding colorectal cancer diagnosis. Int J Cancer, 137(3):615-624.

[15]Iorio MV, Ferracin M, Liu CG, et al., 2005. MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65(16):7065-7070.

[16]Jacob F, Monod J, 1961. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol, 3(3):318-356.

[17]Ji YD, Lei T, 2013. Antisense RNA regulation and application in the development of novel antibiotics to combat multidrug resistant bacteria. Sci Prog, 96(1):43-60.

[18]Khani MH, Yeganeh F, Sotoodehnejadnematalahi F, 2016. Long non-coding RNAs; new perspective for autoimmune disease. MOJ Immunol, 3(3):00090.

[19]Kim J, Chang C, Tucker ML, 2015. To grow old: regulatory role of ethylene and jasmonic acid in senescence. Front Plant Sci, 6:20.

[20]Kim YK, Kim B, Kim VN, 2016. Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci USA, 113(13):E1881-E1889.

[21]Koch L, 2014. Population genomics: a new window into the genetics of complex diseases. Nat Rev Genet, 15(10):644-645.

[22]Lam JKW, Chow MYT, Zhang Y, et al., 2015. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids, 4(9):e252.

[23]Lau NC, Lim LP, Weinstein EG, et al., 2001. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543):858-862.

[24]Lee RC, Feinbaum RL, Ambros V, 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5):843-854.

[25]Legeai F, Derrien T, 2015. Identification of long non-coding RNAs in insects genomes. Curr Opin Insect Sci, 7:37-44.

[26]Ling H, Fabbri M, Calin GA, 2013. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov, 12(11):847-865.

[27]Lu XB, Yu Q, Binder GK, et al., 2004. Antisense-mediated inhibition of human immunodeficiency virus (HIV) replication by use of an HIV type 1-based vector results in severely attenuated mutants incapable of developing resistance. J Virol, 78(13):7079-7088.

[28]Luckanagul JA, Lee LA, You SJ, et al., 2015. Plant virus incorporated hydrogels as scaffolds for tissue engineering possess low immunogenicity in vivo. J Biomed Mater Res A, 103(3):887-895.

[29]Mattick JS, 2009. The genetic signatures of noncoding RNAs. PLoS Genet, 5(4):e1000459.

[30]Mohr AM, Mott JL, 2015. Overview of microRNA biology. Semin Liver Dis, 35(1):3-11.

[31]Moralejo FJ, Cardoza RE, Gutierrez S, et al., 2002. Silencing of the aspergillopepsin B (pepB) gene of Aspergillus awamori by antisense RNA expression or protease removal by gene disruption results in a large increase in thaumatin production. Appl Environ Microbiol, 68(7):3550-3559.

[32]Mourier T, 2011. Retrotransposon-centered analysis of piRNA targeting shows a shift from active to passive retrotransposon transcription in developing mouse testes. BMC Genomics, 12:440.

[33]Nishida KM, Iwasaki YW, Murota Y, et al., 2015. Respective functions of two distinct Siwi complexes assembled during PIWI-interacting RNA biogenesis in Bombyx germ cells. Cell Rep, 10(2):193-203.

[34]Nishimura T, Fabian MR, 2016. Scanning for a unified model for translational repression by microRNAs. EMBO J, 35(11):1158-1159.

[35]Nizampatnam NR, Kumar VD, 2011. Intron hairpin and transitive RNAi mediated silencing of orfH522 transcripts restores male fertility in transgenic male sterile tobacco plants expressing orfH522. Plant Mol Biol, 76(6):557-573.

[36]Oeller PW, Lu MW, Taylor LP, et al., 1991. Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 254(5030):437-439.

[37]Patil SD, Sharma R, Srivastava S, et al., 2013. Downregulation of yidC in Escherichia coli by antisense RNA expression results in sensitization to antibacterial essential oils eugenol and carvacrol. PLoS ONE, 8(3):e57370.

[38]Qi P, Du X, 2013. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol, 26(2):155-165.

[39]Rajan KS, Ramasamy S, 2014. Retrotransposons and piRNA: the missing link in central nervous system. Neurochem Int, 77:94-102.

[40]Riley KJ, Yario TA, Steitz JA, 2012. Association of Argonaute proteins and microRNAs can occur after cell lysis. RNA, 18(9):1581-1585.

[41]Ross RJ, Weiner MM, Lin HF, 2014. PIWI proteins and PIWI-interacting RNAs in the soma. Nature, 505(7483):353-359.

[42]Rusk N, 2015. Understanding noncoding RNAs. Nat Methods, 12(1):35.

[43]Salehuzzaman SNIM, Jacobsen E, Visser RGF, 1993. Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Crantz) and its antisense expression in potato. Plant Mol Biol, 23(5):947-962.

[44]Salomon R, Webster RG, 2009. The influenza virus enigma. Cell, 136(3):402-410.

[45]Sandhu APS, Abdelnoor RV, Mackenzie SA, 2007. Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proc Natl Acad Sci USA, 104(6):1766-1770.

[46]Saurabh S, Vidyarthi AS, Prasad D, 2014. RNA interference: concept to reality in crop improvement. Planta, 239(3):543-564.

[47]Schmidt FR, 2009. The RNA interference—virus interplay: tools of nature for gene modulation, morphogenesis, evolution and a possible mean for aflatoxin control. Appl Microbiol Biotechnol, 83(4):611-615.

[48]Schmiedel JM, Klemm SL, Zheng YN, et al., 2015. MicroRNA control of protein expression noise. Science, 348(6230):128-132.

[49]Simons RW, Hoopes BC, McClure WR, et al., 1983. Three promoters near the termini of IS10: pIN, pOUT, and pIII. Cell, 34(2):673-682.

[50]Szafranski P, Mello CM, Sano T, et al., 1997. A new approach for containment of microorganisms: dual control of streptavidin expression by antisense RNA and the T7 transcription system. Proc Natl Acad Sci USA, 94(4):1059-1063.

[51]Tiwari M, Sharma D, Trivedi PK, 2014. Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol Biol, 86(1-2):1-18.

[52]Tsang FHC, Au SLK, Wei L, et al., 2015. Long non-coding RNA HOTTIP is frequently up-regulated in hepatocellular carcinoma and is targeted by tumour suppressive miR-125b. Liver Int, 35(5):1597-1606.

[53]Valiunas V, Wang HZ, Li L, et al., 2015. A comparison of two cellular delivery mechanisms for small interfering RNA. Physiol Rep, 3(2):e12286.

[54]van der Krol AR, Mol JN, Stuitje AR, 1988. Modulation of eukaryotic gene expression by complementary RNA or DNA sequences. Biotechniques, 6(10):958-976.

[55]van der Meer IM, Stam ME, van Tunen AJ, et al., 1992. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell, 4(3):253-262.

[56]Verstegen MMA, Pan QW, van der Laan LJW, 2015. Gene therapies for hepatitis C virus. In: Berkhout B, Ertl HCJ, Weinberg MS (Eds.), Gene Therapy for HIV and Chronic Infections. Springer, New York, NY, p.1-29.

[57]Villegas VE, Zaphiropoulos PG, 2015. Neighboring gene regulation by antisense long non-coding RNAs. Int J Mol Sci, 16(2):3251-3266.

[58]Wakita T, Moradpour D, Tokushihge K, et al., 1999. Antiviral effects of antisense RNA on hepatitis C virus RNA translation and expression. J Med Virol, 57(3):217-222.

[59]Wang LW, Min JE, Zang X, et al., 2017. Characterizing human immunodeficiency virus antiretroviral therapy interruption and resulting disease progression using population-level data in British Columbia, 1996-2015. Clin Infect Dis, 65(9):1496-1503.

[60]Wang TH, Zhong YH, Huang W, et al., 2005. Antisense inhibition of xylitol dehydrogenase gene, xdh1 from Trichoderma reesei. Lett Appl Microbiol, 40(6):424-429.

[61]Ward AM, Rekosh D, Hammarskjold ML, 2009. Trafficking through the Rev/RRE pathway is essential for efficient inhibition of human immunodeficiency virus type 1 by an antisense RNA derived from the envelope gene. J Virol, 83(2):940-952.

[62]Yang YP, Lin YH, Li LY, et al., 2015. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng, 29: 217-226.

[63]Zhang LJ, Zhao ZJ, Feng ZJ, et al., 2012. RNA interference-mediated silencing of Stat5 induces apoptosis and growth suppression of hepatocellular carcinoma cells. Neoplasma, 59(3):302-309.

[64]Zhou K, He HX, Wu YY, et al., 2008. RNA interference of avian influenza virus H5N1 by inhibiting viral mRNA with siRNA expression plasmids. J Biotechnol, 135(2):140-144.

[65]Zhu XB, Zhi EL, Li Z, 2015. MOV10L1 in piRNA processing and gene silencing of retrotransposons during spermatogenesis. Reproduction, 149(5):R229-R235.

[66]Zuo LJ, Wang ZR, Tan YL, et al., 2016. piRNAs and their functions in the brain. Int J Hum Genet, 16(1-2):53-60.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276/87952783; E-mail: jzus@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE