CLC number: R596.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-06-05
Cited: 0
Clicked: 3076
Josef Finsterer. Secondary manifestations of mitochondrial disorders[J]. Journal of Zhejiang University Science B, 2020, 21(7): 590-592.
@article{title="Secondary manifestations of mitochondrial disorders",
author="Josef Finsterer",
journal="Journal of Zhejiang University Science B",
volume="21",
number="7",
pages="590-592",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2000010"
}
%0 Journal Article
%T Secondary manifestations of mitochondrial disorders
%A Josef Finsterer
%J Journal of Zhejiang University SCIENCE B
%V 21
%N 7
%P 590-592
%@ 1673-1581
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2000010
TY - JOUR
T1 - Secondary manifestations of mitochondrial disorders
A1 - Josef Finsterer
J0 - Journal of Zhejiang University Science B
VL - 21
IS - 7
SP - 590
EP - 592
%@ 1673-1581
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2000010
Abstract: mitochondrial disorders (MIDs) are a heterogeneous group of genetic metabolic diseases due to mutations in the mitochondrial DNA (mtDNA) or in the nuclear DNA (nDNA) (Rahman and Rahman, 2018). Some affected genes encode proteins with various functions, or structural RNAs such as transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs). MIDs may also be caused by mutations in non-coding regions (e.g., D-loop of mtDNA) (Rahman and Rahman, 2018). Proteins involved in MIDs include enzymes, assembling factors, transport proteins, signaling proteins, pore proteins, and fusion/fission proteins (Gorman et al., 2016). The pathways most frequently affected by mutations in “mitochondrial genes” are the respiratory chain and the oxidative phosphorylation. Dysfunction of many other pathways (e.g., β-oxidation, pyruvate-dehydrogenase complex, and heme synthesis) may also manifest as MIDs (Hu et al., 2019). The estimated prevalence of MIDs is at least 1:5000 (Ng and Turnbull, 2016).
[1]Emma F, Salviati L, 2017. Mitochondrial cytopathies and the kidney. Néphrol Thér, 13(S1):S23-S28.
[2]Finsterer J, 2012. Inherited mitochondrial disorders. In: Scatena R, Bottoni P, Giardina B (Eds.), Advances in Mitochondrial Medicine. Springer, Dordrecht, p.187-213.
[3]Finsterer J, 2018. Clinical perspectives of mitochondrial disorders. Pediatr Endocrinol Rev, 16(1):203-208.
[4]Finsterer J, Zarrouk-Mahjoub S, 2016. Mitochondrial vasculopathy. World J Cardiol, 8(5):333-339.
[5]Finsterer J, Melichart-Kotig M, Woehrer A, 2019. Mitochondrial disorder mimicking rheumatoid disease. Z Rheumatol, 78(9):875-880.
[6]Galassi G, Maggi L, Lamantea E, et al., 2017. C10ORF2 mutation associated with progressive external ophthalmoplegia and clinically isolated syndrome. Acta Neurol Belg, 117(4):947-949.
[7]Gorman GS, Chinnery PF, DiMauro S, et al., 2016. Mitochondrial diseases. Nat Rev Dis Primers, 2(1):16080.
[8]Hu SY, Zhuang QQ, Qiu Y, et al., 2019. Cell models and drug discovery for mitochondrial diseases. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(5):449-456.
[9]Kalashnikova LA, Sakharova AV, Dobrynina LA, et al., 2010. Mitochondrial arteriopathy as a cause of spontaneous dissection of cerebral arteries. Zh Nevrol Psikhiatr Im S S Korsakova, 110(4 Suppl 2):3-11 (in Russian).
[10]Kennedy H, Haack TB, Hartill V, et al., 2016. Sudden cardiac death due to deficiency of the mitochondrial inorganic pyrophosphatase PPA2. Am J Hum Genet, 99(3):674-682.
[11]Kytövuori L, Lipponen J, Rusanen H, et al., 2016. A novel mutation m.8561C>G in MT-ATP6/8 causing a mitochondrial syndrome with ataxia, peripheral neuropathy, diabetes mellitus, and hypergonadotropic hypogonadism. J Neurol, 263(11):2188-2195.
[12]Lin L, Cui P, Qiu ZP, et al., 2019. The mitochondrial tRNAAla 5587T>C and tRNALeu(CUN) 12280A>G mutations may be associated with hypertension in a Chinese family. Exp Ther Med, 17(3):1855-1862.
[13]Malfatti E, Laforêt P, Jardel C, et al., 2013. High risk of severe cardiac adverse events in patients with mitochondrial m.3243A>G mutation. Neurology, 80(1):100-105.
[14]Mima A, Shiota F, Matsubara T, et al., 2011. An autopsy case of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) with intestinal bleeding in chronic renal failure. Ren Fail, 33(6):622-625.
[15]Nandal S, Castles A, Asrar ul Haq M, et al., 2019. Takotsubo cardiomyopathy triggered by status epilepticus: case report and literature review. BMJ Case Rep, 12(1):e225924.
[16]Ng YS, Turnbull DM, 2016. Mitochondrial disease: genetics and management. J Neurol, 263:179-191.
[17]Rahman J, Rahman S, 2018. Mitochondrial medicine in the omics era. Lancet, 391(10139):2560-2574.
[18]Rahman S, 2019. Advances in the treatment of mitochondrial epilepsies. Epilepsy Behav, 101:106546.
[19]Rahman S, 2020. Mitochondrial disease in children. J Intern Med, 287:609-633.
[20]Sun XR, Jiang GH, Ju XY, et al., 2018. MELAS and macroangiopathy: a case report and literature review. Medicine, 97(52):e13866.
[21]Tay SHK, Nordli DR Jr, Bonilla E, et al., 2006. Aortic rupture in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes. Arch Neurol, 63(2):281-283.
[22]Varanasi SS, Francis RM, Berger CEM, et al., 1999. Mitochondrial DNA deletion associated oxidative stress and severe male osteoporosis. Osteoporos Int, 10(2):143-149.
Open peer comments: Debate/Discuss/Question/Opinion
<1>