CLC number:
On-line Access: 2021-01-15
Received: 2020-06-01
Revision Accepted: 2020-08-16
Crosschecked: 2020-12-16
Cited: 0
Clicked: 3275
Citations: Bibtex RefMan EndNote GB/T7714
Shan QIU, Jun HUANG. MRN complex is an essential effector of DNA damage repair[J]. Journal of Zhejiang University Science B, 2021, 22(1): 31-37.
@article{title="MRN complex is an essential effector of DNA damage repair",
author="Shan QIU, Jun HUANG",
journal="Journal of Zhejiang University Science B",
volume="22",
number="1",
pages="31-37",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2000289"
}
%0 Journal Article
%T MRN complex is an essential effector of DNA damage repair
%A Shan QIU
%A Jun HUANG
%J Journal of Zhejiang University SCIENCE B
%V 22
%N 1
%P 31-37
%@ 1673-1581
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2000289
TY - JOUR
T1 - MRN complex is an essential effector of DNA damage repair
A1 - Shan QIU
A1 - Jun HUANG
J0 - Journal of Zhejiang University Science B
VL - 22
IS - 1
SP - 31
EP - 37
%@ 1673-1581
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2000289
Abstract: Genome stability can be threatened by both endogenous and exogenous agents. Organisms have evolved numerous mechanisms to repair DNA damage, including homologous recombination (HR) and non-homologous end joining (NHEJ). Among the factors associated with DNA repair, the MRE11-RAD50-NBS1 (MRN) complex (MRE11-RAD50-XRS2 in Saccharomyces cerevisiae) plays important roles not only in DNA damage recognition and signaling but also in subsequent HR or NHEJ repair. Upon detecting DNA damage, the MRN complex activates signaling molecules, such as the protein kinase ataxia-telangiectasia mutated (ATM), to trigger a broad DNA damage response, including cell cycle arrest. The nuclease activity of the MRN complex is responsible for DNA end resection, which guides DNA repair to HR in the presence of sister chromatids. The MRN complex is also involved in NHEJ, and has a species-specific role in hairpin repair. This review focuses on the structure of the MRN complex and its function in DNA damage repair.
[1]BianL, MengYL, ZhangMC, et al., 2019. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer, 18:169.
[2]BugreevDV, YuX, EgelmanEH, et al., 2007. Novel pro- and anti-recombination activities of the Bloom鈥檚 syndrome helicase. Genes Dev, 21(23):3085-3094.
[3]BuisJ, WuY, DengYB, et al., 2008. Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell, 135(1):85-96.
[4]CannavoE, ReginatoG, CejkaP, 2019. Stepwise 5' DNA end-specific resection of DNA breaks by the Mre11-Rad50-Xrs2 and Sae2 nuclease ensemble. Proc Natl Acad Sci USA, 116(12):5505-5513.
[5]ChenC, ZhangGL, HuangNJ, et al., 2013. Suppression of DNA-damage checkpoint signaling by Rsk-mediated phosphorylation of Mre11. Proc Natl Acad Sci USA, 110(51):20605-20610.
[6]DavisAJ, ChenDJ, 2013. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res, 2(3):130-143.
[7]DengSK, YinY, PetesTD, et al., 2015. Mre11-Sae2 and RPA collaborate to prevent palindromic gene amplification. Mol Cell, 60(3):500-508.
[8]DeshpandeRA, MylerLR, SoniatMM, et al., 2020. DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. Sci Adv, 6(2):eaay0922.
[9]DigweedM, SperlingK, 2004. Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair, 3(8-9):1207-1217.
[10]GaoR, SinghR, KaulZ, et al., 2015. Targeting of DNA damage signaling pathway induced senescence and reduced migration of cancer cells. J Gerontol: Ser A, 70(6):701-713.
[11]GobbiniE, CassaniC, VertemaraJ, et al., 2018. The MRX complex regulates Exo1 resection activity by altering DNA end structure. EMBO J, 37(16):e98588.
[12]HaGH, JiJH, ChaeS, et al., 2019. Pellino1 regulates reversible ATM activation via NBS1 ubiquitination at DNA double-strand breaks. Nat Commun, 10:1577.
[13]HanJH, HuangJ, 2020. DNA double-strand break repair pathway choice: the fork in the road. Genome Instab Dis, 1(1):10-19.
[14]HeYJ, MeghaniK, CaronMC, et al., 2018. DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature, 563(7732):522-526.
[15]HuertasP, 2010. DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol, 17(1):11-16.
[16]JetteN, Lees-MillerSP, 2015. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog Biophys Mol Biol, 117(2-3):194-205.
[17]JinMH, OhDY, 2019. ATM in DNA repair in cancer. Pharmacol Ther, 203:107391.
[18]KowalczykowskiSC, 2015. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb Perspect Biol, 7(11):a016410.
[19]Lafrance-VanasseJ, WilliamsGJ, TainerJA, 2015. Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA replication and repair. Prog Biophys Mol Biol, 117(2-3):182-193.
[20]LamarcheBJ, OrazioNI, WeitzmanMD, 2010. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett, 584(17):3682-3695.
[21]LangerakP, Mejia-RamirezE, LimboO, et al., 2011. Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double-strand breaks. PLoS Genet, 7(9):e1002271.
[22]LavinMF, KozlovS, GateiM, et al., 2015. ATM-dependent phosphorylation of all three members of the MRN complex: from sensor to adaptor. Biomolecules, 5(4):2877-2902.
[23]LeeKY, ImJS, ShibataE, et al., 2015. MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat Commun, 6:7744.
[24]LiYH, WangJY, ZhouG, et al., 2017. Nonhomologous end-joining with minimal sequence loss is promoted by the Mre11-Rad50-Nbs1-Ctp1 complex in Schizosaccharomyces pombe. Genetics, 206(1):481-496.
[25]LiuT, HuangJ, 2014. Quality control of homologous recombination. Cell Mol Life Sci, 71(19):3779-3797.
[26]LiuT, HuangJ, 2016. DNA end resection: facts and mechanisms. Genomics Proteomics Bioinform, 14(3):126-130.
[27]NakadaD, MatsumotoK, SugimotoK, 2003. ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev, 17(16):1957-1962.
[28]PanierS, BoultonSJ, 2014. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol, 15(1):7-18.
[29]PatelDS, MisenkoSM, HerJ, et al., 2017. BLM helicase regulates DNA repair by counteracting RAD51 loading at DNA double-strand break sites. J Cell Biol, 216(11):3521-3534.
[30]PrakashR, ZhangY, FengWR, et al., 2015. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol, 7(4):a016600.
[31]RassE, GrabarzA, PloI, et al., 2009. Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat Struct Mol Biol, 16(8):819-824.
[32]RojowskaA, LammensK, SeifertFU, et al., 2014. Structure of the Rad50 DNA double-strand break repair protein in complex with DNA. EMBO J, 33(23):2847-2859.
[33]RungeKW, LiYH, 2018. A curious new role for MRN in Schizosaccharomyces pombe non-homologous end-joining. Curr Genet, 64(2):359-364.
[34]RupnikA, GrenonM, LowndesN, 2008. The MRN complex. Curr Biol, 18(11):R455-R457.
[35]SallmyrA, TomkinsonAE, 2018. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem, 293(27):10536-10546.
[36]SchillerCB, SeifertFU, Linke-WinnebeckC, et al., 2014. Structural studies of DNA end detection and resection in homologous recombination. Cold Spring Harb Perspect Biol, 6(10):a017962.
[37]ScullyR, PandayA, ElangoR, et al., 2019. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol, 20(11):698-714.
[38]SedghiM, SalariM, MoslemiAR, et al., 2018. Ataxia-telangiectasia-like disorder in a family deficient for MRE11A, caused by a MRE11 variant. Neurol Genet, 4(6):e295.
[39]SharmaA, SinghK, AlmasanA, 2012. Histone H2AX phosphorylation: a marker for DNA damage. In: Bjergb忙k L (Ed.), DNA Repair Protocols. Methods in Molecular Biology. Humana Press, Totowa, NJ, p.613-626.
[40]ShibataA, MoianiD, ArvaiAS, et al., 2014. DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol Cell, 53(1):7-18.
[41]StrackerTH, PetriniJHJ, 2011. The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol, 12(2):90-103.
[42]TatebeH, LimCT, KonnoH, et al., 2020. Rad50 zinc hook functions as a constitutive dimerization module interchangeable with SMC hinge. Nat Commun, 11:370.
[43]TikooS, MadhavanV, HussainM, et al., 2013. Ubiquitin-dependent recruitment of the Bloom Syndrome helicase upon replication stress is required to suppress homologous recombination. EMBO J, 32(12):1778-1792.
[44]TripathiV, AgarwalH, PriyaS, et al., 2018. MRN complex-dependent recruitment of ubiquitylated BLM helicase to DSBs negatively regulates DNA repair pathways. Nat Commun, 9:1016.
[45]WangQH, GoldsteinM, AlexanderP, et al., 2014. Rad17 recruits the MRE11-RAD50-NBS1 complex to regulate the cellular response to DNA double-strand breaks. EMBO J, 33(8):862-877.
[46]WangZF, GongYM, PengB, et al., 2019. MRE11 UFMylation promotes ATM activation. Nucleic Acids Res, 47(8):4124-4135.
[47]WilliamsRS, MoncalianG, WilliamsJS, et al., 2008. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell, 135(1):97-109.
[48]WilliamsRS, DodsonGE, LimboO, et al., 2009. Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell, 139(1):87-99.
[49]XieAY, KwokA, ScullyR, 2009. Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nat Struct Mol Biol, 16(8):814-818.
[50]XieMH, ParkD, YouS, et al., 2015. Bcl2 inhibits recruitment of Mre11 complex to DNA double-strand breaks in response to high-linear energy transfer radiation. Nucleic Acids Res, 43(2):960-972.
[51]ZhangB, TangZH, LiLJ, et al., 2020. NBS1 is required for SPO11-linked DNA double-strand break repair in male meiosis. Cell Death Differ, 27(7):2176-2190.
[52]ZhuZ, ChungWH, ShimEY, et al., 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell, 134(6):981-94.
Open peer comments: Debate/Discuss/Question/Opinion
<1>