Full Text:   <2033>

Summary:  <1345>

CLC number: 

On-line Access: 2021-01-15

Received: 2020-06-01

Revision Accepted: 2020-08-16

Crosschecked: 2020-12-16

Cited: 0

Clicked: 2887

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shan QIU

https://orcid.org/0000-0001-5091-4351

Jun HUANG

https://orcid.org/0000-0002-7837-653X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2021 Vol.22 No.1 P.31-37

http://doi.org/10.1631/jzus.B2000289


MRN complex is an essential effector of DNA damage repair


Author(s):  Shan QIU, Jun HUANG

Affiliation(s):  The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   jhuang@zju.edu.cn

Key Words:  DNA damage repair, MRE11-RAD50-NBS1 (MRN) complex, Homologous recombination, Non-homologous end joining


Shan QIU, Jun HUANG. MRN complex is an essential effector of DNA damage repair[J]. Journal of Zhejiang University Science B, 2021, 22(1): 31-37.

@article{title="MRN complex is an essential effector of DNA damage repair",
author="Shan QIU, Jun HUANG",
journal="Journal of Zhejiang University Science B",
volume="22",
number="1",
pages="31-37",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2000289"
}

%0 Journal Article
%T MRN complex is an essential effector of DNA damage repair
%A Shan QIU
%A Jun HUANG
%J Journal of Zhejiang University SCIENCE B
%V 22
%N 1
%P 31-37
%@ 1673-1581
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2000289

TY - JOUR
T1 - MRN complex is an essential effector of DNA damage repair
A1 - Shan QIU
A1 - Jun HUANG
J0 - Journal of Zhejiang University Science B
VL - 22
IS - 1
SP - 31
EP - 37
%@ 1673-1581
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2000289


Abstract: 
Genome stability can be threatened by both endogenous and exogenous agents. Organisms have evolved numerous mechanisms to repair DNA damage, including homologous recombination (HR) and non-homologous end joining (NHEJ). Among the factors associated with DNA repair, the MRE11-RAD50-NBS1 (MRN) complex (MRE11-RAD50-XRS2 in Saccharomyces cerevisiae) plays important roles not only in DNA damage recognition and signaling but also in subsequent HR or NHEJ repair. Upon detecting DNA damage, the MRN complex activates signaling molecules, such as the protein kinase ataxia-telangiectasia mutated (ATM), to trigger a broad DNA damage response, including cell cycle arrest. The nuclease activity of the MRN complex is responsible for DNA end resection, which guides DNA repair to HR in the presence of sister chromatids. The MRN complex is also involved in NHEJ, and has a species-specific role in hairpin repair. This review focuses on the structure of the MRN complex and its function in DNA damage repair.

MRN蛋白复合物是一个重要的DNA损伤修复效应因子

概要:基因组的稳定性时刻都遭受着来自细胞内源和外源损伤因素的威胁,如果这些损伤不能够被及时、准确地修复,将会导致细胞衰老、死亡,甚至癌变的发生。因此,为了维持基因组稳定性,生物体进化出了一系列复杂而精确的修复方式以应对DNA损伤,包括同源重组修复和非同源末端连接修复。其中,MRE11-RAD50-NBS1(MRN)复合物(酿酒酵母同源物为MRE11-RAD50-XRS2)不仅参与DNA损伤识别和信号传递,还在同源重组修复和非同源末端连接修复过程中发挥着极其重要的作用。当DNA损伤被识别后,MRN复合物首先会激活信号分子(如ATM激酶等),从而引发信号级联反应放大DNA损伤应答效应,包括细胞周期阻滞。作为一个核酸酶,MRN复合物利用其核酸酶活性进行DNA末端切割,在有姐妹染色单体存在时,促使同源重组修复。此外,MRN复合物也参与了非同源末端连接修复,并在修复发卡结构方面具有物种特异性。该篇综述将主要讨论MRN复合物的结构及其在DNA损伤修复中的功能。

关键词:DNA损伤修复;MRE11-RAD50-NBS1(MRN)蛋白复合物;同源重组修复;非同源末端连接修复

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BianL, MengYL, ZhangMC, et al., 2019. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer, 18:169.

[2]BugreevDV, YuX, EgelmanEH, et al., 2007. Novel pro- and anti-recombination activities of the Bloom鈥檚 syndrome helicase. Genes Dev, 21(23):3085-3094.

[3]BuisJ, WuY, DengYB, et al., 2008. Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell, 135(1):85-96.

[4]CannavoE, ReginatoG, CejkaP, 2019. Stepwise 5' DNA end-specific resection of DNA breaks by the Mre11-Rad50-Xrs2 and Sae2 nuclease ensemble. Proc Natl Acad Sci USA, 116(12):5505-5513.

[5]ChenC, ZhangGL, HuangNJ, et al., 2013. Suppression of DNA-damage checkpoint signaling by Rsk-mediated phosphorylation of Mre11. Proc Natl Acad Sci USA, 110(51):20605-20610.

[6]DavisAJ, ChenDJ, 2013. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res, 2(3):130-143.

[7]DengSK, YinY, PetesTD, et al., 2015. Mre11-Sae2 and RPA collaborate to prevent palindromic gene amplification. Mol Cell, 60(3):500-508.

[8]DeshpandeRA, MylerLR, SoniatMM, et al., 2020. DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. Sci Adv, 6(2):eaay0922.

[9]DigweedM, SperlingK, 2004. Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair, 3(8-9):1207-1217.

[10]GaoR, SinghR, KaulZ, et al., 2015. Targeting of DNA damage signaling pathway induced senescence and reduced migration of cancer cells. J Gerontol: Ser A, 70(6):701-713.

[11]GobbiniE, CassaniC, VertemaraJ, et al., 2018. The MRX complex regulates Exo1 resection activity by altering DNA end structure. EMBO J, 37(16):e98588.

[12]HaGH, JiJH, ChaeS, et al., 2019. Pellino1 regulates reversible ATM activation via NBS1 ubiquitination at DNA double-strand breaks. Nat Commun, 10:1577.

[13]HanJH, HuangJ, 2020. DNA double-strand break repair pathway choice: the fork in the road. Genome Instab Dis, 1(1):10-19.

[14]HeYJ, MeghaniK, CaronMC, et al., 2018. DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature, 563(7732):522-526.

[15]HuertasP, 2010. DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol, 17(1):11-16.

[16]JetteN, Lees-MillerSP, 2015. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog Biophys Mol Biol, 117(2-3):194-205.

[17]JinMH, OhDY, 2019. ATM in DNA repair in cancer. Pharmacol Ther, 203:107391.

[18]KowalczykowskiSC, 2015. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb Perspect Biol, 7(11):a016410.

[19]Lafrance-VanasseJ, WilliamsGJ, TainerJA, 2015. Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA replication and repair. Prog Biophys Mol Biol, 117(2-3):182-193.

[20]LamarcheBJ, OrazioNI, WeitzmanMD, 2010. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett, 584(17):3682-3695.

[21]LangerakP, Mejia-RamirezE, LimboO, et al., 2011. Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double-strand breaks. PLoS Genet, 7(9):e1002271.

[22]LavinMF, KozlovS, GateiM, et al., 2015. ATM-dependent phosphorylation of all three members of the MRN complex: from sensor to adaptor. Biomolecules, 5(4):2877-2902.

[23]LeeKY, ImJS, ShibataE, et al., 2015. MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat Commun, 6:7744.

[24]LiYH, WangJY, ZhouG, et al., 2017. Nonhomologous end-joining with minimal sequence loss is promoted by the Mre11-Rad50-Nbs1-Ctp1 complex in Schizosaccharomyces pombe. Genetics, 206(1):481-496.

[25]LiuT, HuangJ, 2014. Quality control of homologous recombination. Cell Mol Life Sci, 71(19):3779-3797.

[26]LiuT, HuangJ, 2016. DNA end resection: facts and mechanisms. Genomics Proteomics Bioinform, 14(3):126-130.

[27]NakadaD, MatsumotoK, SugimotoK, 2003. ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev, 17(16):1957-1962.

[28]PanierS, BoultonSJ, 2014. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol, 15(1):7-18.

[29]PatelDS, MisenkoSM, HerJ, et al., 2017. BLM helicase regulates DNA repair by counteracting RAD51 loading at DNA double-strand break sites. J Cell Biol, 216(11):3521-3534.

[30]PrakashR, ZhangY, FengWR, et al., 2015. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol, 7(4):a016600.

[31]RassE, GrabarzA, PloI, et al., 2009. Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat Struct Mol Biol, 16(8):819-824.

[32]RojowskaA, LammensK, SeifertFU, et al., 2014. Structure of the Rad50 DNA double-strand break repair protein in complex with DNA. EMBO J, 33(23):2847-2859.

[33]RungeKW, LiYH, 2018. A curious new role for MRN in Schizosaccharomyces pombe non-homologous end-joining. Curr Genet, 64(2):359-364.

[34]RupnikA, GrenonM, LowndesN, 2008. The MRN complex. Curr Biol, 18(11):R455-R457.

[35]SallmyrA, TomkinsonAE, 2018. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem, 293(27):10536-10546.

[36]SchillerCB, SeifertFU, Linke-WinnebeckC, et al., 2014. Structural studies of DNA end detection and resection in homologous recombination. Cold Spring Harb Perspect Biol, 6(10):a017962.

[37]ScullyR, PandayA, ElangoR, et al., 2019. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol, 20(11):698-714.

[38]SedghiM, SalariM, MoslemiAR, et al., 2018. Ataxia-telangiectasia-like disorder in a family deficient for MRE11A, caused by a MRE11 variant. Neurol Genet, 4(6):e295.

[39]SharmaA, SinghK, AlmasanA, 2012. Histone H2AX phosphorylation: a marker for DNA damage. In: Bjergb忙k L (Ed.), DNA Repair Protocols. Methods in Molecular Biology. Humana Press, Totowa, NJ, p.613-626.

[40]ShibataA, MoianiD, ArvaiAS, et al., 2014. DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol Cell, 53(1):7-18.

[41]StrackerTH, PetriniJHJ, 2011. The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol, 12(2):90-103.

[42]TatebeH, LimCT, KonnoH, et al., 2020. Rad50 zinc hook functions as a constitutive dimerization module interchangeable with SMC hinge. Nat Commun, 11:370.

[43]TikooS, MadhavanV, HussainM, et al., 2013. Ubiquitin-dependent recruitment of the Bloom Syndrome helicase upon replication stress is required to suppress homologous recombination. EMBO J, 32(12):1778-1792.

[44]TripathiV, AgarwalH, PriyaS, et al., 2018. MRN complex-dependent recruitment of ubiquitylated BLM helicase to DSBs negatively regulates DNA repair pathways. Nat Commun, 9:1016.

[45]WangQH, GoldsteinM, AlexanderP, et al., 2014. Rad17 recruits the MRE11-RAD50-NBS1 complex to regulate the cellular response to DNA double-strand breaks. EMBO J, 33(8):862-877.

[46]WangZF, GongYM, PengB, et al., 2019. MRE11 UFMylation promotes ATM activation. Nucleic Acids Res, 47(8):4124-4135.

[47]WilliamsRS, MoncalianG, WilliamsJS, et al., 2008. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell, 135(1):97-109.

[48]WilliamsRS, DodsonGE, LimboO, et al., 2009. Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell, 139(1):87-99.

[49]XieAY, KwokA, ScullyR, 2009. Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nat Struct Mol Biol, 16(8):814-818.

[50]XieMH, ParkD, YouS, et al., 2015. Bcl2 inhibits recruitment of Mre11 complex to DNA double-strand breaks in response to high-linear energy transfer radiation. Nucleic Acids Res, 43(2):960-972.

[51]ZhangB, TangZH, LiLJ, et al., 2020. NBS1 is required for SPO11-linked DNA double-strand break repair in male meiosis. Cell Death Differ, 27(7):2176-2190.

[52]ZhuZ, ChungWH, ShimEY, et al., 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell, 134(6):981-94.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE