Full Text:   <4261>

CLC number: TP274; TM911.4

On-line Access: 2011-09-09

Received: 2010-10-21

Revision Accepted: 2011-01-25

Crosschecked: 2011-07-29

Cited: 1

Clicked: 9632

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2011 Vol.12 No.9 P.774-786

http://doi.org/10.1631/jzus.C1000368


Interconnection and damping assignment and Euler-Lagrange passivity-based control of photovoltaic/battery hybrid power source for stand-alone applications


Author(s):  Ali Tofighi, Mohsen Kalantar

Affiliation(s):  Department of Electrical Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran, Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

Corresponding email(s):   tofighi@iust.ac.ir, kalantar@iust.ac.ir

Key Words:  DC hybrid power source, Euler-Lagrange (EL) equations, Interconnection and damping assignment (IDA), Passivity-based control, Photovoltaic, Li-ion battery


Share this article to: More <<< Previous Article|

Ali Tofighi, Mohsen Kalantar. Interconnection and damping assignment and Euler-Lagrange passivity-based control of photovoltaic/battery hybrid power source for stand-alone applications[J]. Journal of Zhejiang University Science C, 2011, 12(9): 774-786.

@article{title="Interconnection and damping assignment and Euler-Lagrange passivity-based control of photovoltaic/battery hybrid power source for stand-alone applications",
author="Ali Tofighi, Mohsen Kalantar",
journal="Journal of Zhejiang University Science C",
volume="12",
number="9",
pages="774-786",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1000368"
}

%0 Journal Article
%T Interconnection and damping assignment and Euler-Lagrange passivity-based control of photovoltaic/battery hybrid power source for stand-alone applications
%A Ali Tofighi
%A Mohsen Kalantar
%J Journal of Zhejiang University SCIENCE C
%V 12
%N 9
%P 774-786
%@ 1869-1951
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1000368

TY - JOUR
T1 - Interconnection and damping assignment and Euler-Lagrange passivity-based control of photovoltaic/battery hybrid power source for stand-alone applications
A1 - Ali Tofighi
A1 - Mohsen Kalantar
J0 - Journal of Zhejiang University Science C
VL - 12
IS - 9
SP - 774
EP - 786
%@ 1869-1951
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1000368


Abstract: 
A DC hybrid power source composed of photovoltaic cells as the main power source, li-ion battery storage as the secondary power source, and power electronic interface, is modeled based on port-controlled Hamiltonian systems and Euler-Lagrange framework. Subsequently, passivity-based controllers are synthesized. Local asymptotic stability is ensured as well. In addition, a power management system is designed to manage power flow between components. Modeling and simulation of the proposed hybrid power source is accomplished using MATLAB/Simulink. Our interest is focused on the comparison of the two passivity-based control methods and their use in hybrid power systems.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ayad, M.Y., Becherif, M., Henni, A., Aboubou, A., Wack, M., Laghrouche, S., 2010. Passivity-based control applied to DC hybrid power source using fuel cell and supercapacitors. Energy Conv. Manag., 51(7):1468-1475.

[2]Becherif, M., Paire, D., Miraoui, A., 2007. Energy Management of Solar Panel and Battery System with Passive Control. Int. Conf. on Clean Electrical Power, p.14-19.

[3]Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., Galván, E., Guisado, R.C.P., Prats, M.Á.M., León, J.I., Moreno-Alfonso, N., 2006. Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans. Ind. Electron., 53(4):1002-1016.

[4]Chen, M., Rincon-Mora, G.A., 2006. Accurate electrical battery model capable of predicting runtime and IV performance. IEEE Trans. Energy Conv., 21(2):504-511.

[5]Dali, M., Belhadj, J., Roboam, X., 2010. Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: control and energy management— experimental investigation. Energy, 35(6):2587-2595.

[6]Dalsmo, M., van der Schaft, A., 1998. On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J. Control Optim., 37(1):54-91.

[7]Dòria-Cerezo, A., 2006. Modeling, Simulation and Control of a Doubly-Fed Induction Machine Controlled by a Back-to-Back Converter. PhD Thesis, Technical University of Catalonia, Spain.

[8]Durr, M., Cruden, A., Gair, S., McDonald, J.R., 2006. Dynamic model of a lead acid battery for use in a domestic fuel cell system. J. Power Sources, 161(2):1400-1411.

[9]Duryea, S., Isalm, S., Lawrance, W., 2001. A battery management system for stand-alone photovoltaic energy systems. IEEE Ind. Appl. Mag., 7(3):67-72.

[10]El-Shatter, T.F., Eskander, M.N., El-Hagry, M.T., 2006. Energy flow and management of a hybrid wind/PV/fuel cell generation system. Energy Conv. Manag., 47(9-10):1264-1280.

[11]Escobar, G., Ortega, R., Sira-Ramirez, H., Vilain, J.P., Zein, I., 1999. An experimental comparison of several nonlinear controllers for power converters. IEEE Control Syst. Mag., 19(1):66-82.

[12]Esram, T., Chapman, P.L., 2007. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Conv., 22(2):439-449.

[13]Glavin, M.E., Chan, P.K.W., Armstrong, S., Hurley, W.G., 2008. A Stand-Alone Photovoltaic Supercapacitor Battery Hybrid Energy Storage System. 13th Int. Power Electronics and Motion Control Conf., p.1688-1695.

[14]Golkar, M.A., Hajizadeh, A., 2009. Control strategy of hybrid fuel cell/battery distributed generation system for grid-connected operation. J. Zhejiang Univ.-Sci. A, 10(4):488-496.

[15]Jeong, K.S., Lee, W.Y., Kim, C.S., 2005. Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics. J. Power Sources, 145(2):319-326.

[16]Jiang, Z., Gao, L., Dougal, R.A., 2007. Adaptive control strategy for active power sharing in hybrid fuel cell/battery power sources. IEEE Trans. Energy Conv., 22(2):507-515.

[17]Khateeb, S.A., Farid, M.M., Selman, J.R., Al-Hallaj, S., 2006. Mechanical–electrochemical modeling of Li-ion battery designed for an electric scooter. J. Power Sources, 158(1):673-678.

[18]Kim, D.E., Lee, D.C., 2007. Feedback Linearization Control of Three-Phase AC/DC PWM Converters with LCL Input Filters. 7th Int. Conf. on Power Electronics, p.766-771.

[19]Kim, I.S., Kim, M.B., Youn, M.J., 2006. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system. IEEE Trans. Ind. Electron., 53(4):1027-1035.

[20]Komurcugil, H., 2010. Steady-state analysis and passivity-based control of single-phase PWM current-source inverters. IEEE Trans. Ind. Electron., 57(3):1026-1030.

[21]Koutroulis, E., Kalaitzakis, K., Voulgaris, N.C., 2001. Development of a microcontroller based, photovoltaic maximum power point tracking control system. IEEE Trans. Power Electron., 16(1):46-54.

[22]Kwasinski, A., Krein, P.T., 2007. Passivity-Based Control of Buck Converters with Constant-Power Loads. IEEE Power Electronics Specialists Conf., p.259-265.

[23]Kwon, J.M., Nam, K.H., Kwon, B.H., 2006. Photovoltaic power conditioning system with line connection. IEEE Trans. Ind. Electron., 53(4):1048-1054.

[24]Kwon, J.M., Kwon, B.H., Nam, K.H., 2008. Three-phase photovoltaic system with three-level boosting MPPT control. IEEE Trans. Power Electron., 23(5):2319-2327.

[25]Lagorse, J., Paire, D., Miraoui, A., 2009. Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery. Renew. Energy, 34(3):683-691.

[26]Lee, T.S., 2004. Lagrangian modeling and passivity-based control of three-phase AC/DC voltage-source converters. IEEE Trans. Ind. Electron., 51(4):892-902.

[27]Leyva, R., Cid-Pastor, A., Alonso, C., Queinnec, I., Tarbouriech, S., Martinez-Salamero, L., 2006. Passivity-based integral control of a boost converter for large-signal stability. IEE Proc.-Control Theory Appl., 153(2):139-146.

[28]Lu, D.D.C., Agelidis, V.G., 2009. Photovoltaic-battery-powered DC bus system for common portable electronic devices. IEEE Trans. Power Electron., 24(3):849-855.

[29]Márquez-Contreras, R., Rodríguez-Cortés, H., Spinetti-Rivera, M., 2008. Revisiting IDA-PBC, Open-Loop Control, and Modeling for the Boost DC-DC Power Converter. Latin American Congress of Automatic Control.

[30]Mazumder, S.K., Nayfeh, A.H., Borojevic, D., 2002. Robust control of parallel DC–DC buck converters by combining integral-variable-structure and multiple-sliding-surface control schemes. IEEE Trans. Power Electron., 17(3):428-437.

[31]Moreno, J., Ortúzar, M.E., Dixon, J.W., 2006. Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks. IEEE Trans. Ind. Electron., 53(2):614-623.

[32]Ortega, R., Loria, A., Nicklasson, P.J., Sira-Ramirez, H., 1998. Passivity Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electrochemical Applications. Springer-Verlag, London, UK.

[33]Ortega, R., van der Schaft, A., Maschke, B., Escobar, G., 2002. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica, 38(4):585-596.

[34]Scarpa, V., Buso, S., Spiazzi, G., 2009. Low-complexity MPPT technique exploiting the PV module MPP locus characterization. IEEE Trans. Ind. Electron., 56(5):1531-1538.

[35]Scherpen, J.M.A., Jeltsema, D., Klaassens, J.B., 2003. Lagrangian modeling of switching electrical networks. Syst. Control Lett., 48(5):365-374.

[36]Sebastian, R., Quesada, J., 2006. Distributed control system for frequency control in an isolated wind system. Renew. Energy, 31(3):285-305.

[37]Sera, D., Kerekes, T., Teodorescu, R., Blaabjerg, F., 2006. Improved MPPT Algorithms for Rapidly Changing Environmental Conditions. 12th Int. Conf. on Power Electronics and Motion Control, p.1614-1619.

[38]Sira-Ramirez, H., Ortega, R., Garcia-Esteban, M., 1998. Adaptive passivity-based control of average DC-to-DC power converter models. Int. J. Adapt. Control Signal Process., 12(1):63-80.

[39]Timbus, A., Liserre, M., Teodorescu, R., Rodriguez, P., Blaabjerg, F., 2009. Evaluation of current controllers for distributed power generation systems. IEEE Trans. Power Electron., 24(3):654-664.

[40]Uzunoglu, M., Onar, O.C., Alam, M.S., 2009. Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications. Renew. Energy, 34(3):509-520.

[41]Vmquez, N., Hernandez, C., Alvarez, J., Arau, J., 2003. Sliding Mode Control for DC/DC Converters: a New Sliding Surface. Int. Symp. on Industrial Electronics, p.422-426.

[42]Walker, G., 2001. Evaluating MPPT converter topologies using a Matlab PV model. J. Electr. Electron. Eng. Aust., 21(1):49-56.

[43]Wang, P., Wang, J., Xu, Z., 2008. Passivity-Based Control of Three Phase Voltage Source PWM Rectifiers Based on PCHD Model. Int. Conf. on Electrical Machines and Systems, p.1126-1130.

[44]Wang, Z., Chang, L., 2008. A DC voltage monitoring and control method for three-phase grid-connected wind turbine inverters. IEEE Trans. Power Electron., 23(3):1118-1125.

[45]Yu, D., Yuvarajan, S., 2006. Load Sharing in a Hybrid Power Source with a PV Panel and PEM Fuel-Cell. 21st Annual IEEE Conf. and Exposition on Applied Power Electronics, p.1245-1249.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE