CLC number: TP27
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-07-29
Cited: 3
Clicked: 7282
Zhe-jing Bao, Gang Wu, Wen-jun Yan. Control of cascading failures in coupled map lattices based on adaptive predictive pinning control[J]. Journal of Zhejiang University Science C, 2011, 12(10): 828-835.
@article{title="Control of cascading failures in coupled map lattices based on adaptive predictive pinning control",
author="Zhe-jing Bao, Gang Wu, Wen-jun Yan",
journal="Journal of Zhejiang University Science C",
volume="12",
number="10",
pages="828-835",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1000369"
}
%0 Journal Article
%T Control of cascading failures in coupled map lattices based on adaptive predictive pinning control
%A Zhe-jing Bao
%A Gang Wu
%A Wen-jun Yan
%J Journal of Zhejiang University SCIENCE C
%V 12
%N 10
%P 828-835
%@ 1869-1951
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1000369
TY - JOUR
T1 - Control of cascading failures in coupled map lattices based on adaptive predictive pinning control
A1 - Zhe-jing Bao
A1 - Gang Wu
A1 - Wen-jun Yan
J0 - Journal of Zhejiang University Science C
VL - 12
IS - 10
SP - 828
EP - 835
%@ 1869-1951
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1000369
Abstract: An adaptive predictive pinning control is proposed to suppress the cascade in coupled map lattices (CMLs). Two monitoring strategies are applied: (1) A specific fraction of nodes with the highest degree or betweenness are chosen to constitute the set of monitored nodes; (2) During the cascade, an adaptive pinning control is implemented, in which only the nodes in the monitored set whose current state is normal but whose predictive state is abnormal, are pinned with the predictive controller. Simulations show that for the scale-free (SF) CML the degree-based monitoring strategy is advantageous over the betweenness-based strategy, while for the small-world (SW) CML the situation is the opposite. With the adaptive predictive pinning control, the fewer local controllers can effectively suppress the cascade throughout the whole network.
[1]Ash, J., Newth, D., 2007. Optimizing complex networks for resilience against cascading failure. Phys. A, 380:673-683.
[2]Bao, Z.J., Cao, Y.J., Ding, L.J., Han, Z.X., Wang, G.Z., 2008a. Dynamics of load entropy during cascading failure propagation in scale-free networks. Phys. Lett. A, 372(36):5778-5782.
[3]Bao, Z.J., Cao, Y.J., Ding, L.J., Wang, G.Z., Han, Z.X., 2008b. Synergetic behavior in the cascading failure propagation of scale-free coupled map lattices. Phys. A, 387(23):5922-5929.
[4]Barabási, A.L., Albert, R., 1999. Emergence of scaling in random networks. Science, 286(5439):509-512.
[5]Crucitti, P., Latora, V., Marchiori, M., 2004. Model for cascading failures in complex networks. Phys. Rev. E, 69(4):045104.
[6]Gade, P.M., Hu, C.K., 2000. Synchronous chaos in coupled map lattices with small-world interactions. Phys. Rev. E, 62(5):6409.
[7]Huang, L., Lai, Y.C., Chen, G.R., 2008. Understanding and preventing cascading breakdown in complex clustered networks. Phys. Rev. E, 78(3):036116.
[8]Jost, J., Joy, M.P., 2001. Spectral properties and synchronization in coupled map lattices. Phys. Rev. E, 65(1):016201.
[9]Lai, Y.C., Motter, A., Nishikawa, T., Park, K., Zhao, L., 2005. Complex networks: dynamics and security. Pramana-J. Phys., 64(4):483-502.
[10]Li, C.G., Chen, G., 2004. Synchronization in general complex dynamical networks with coupling delays. Phys. A, 343:263-278.
[11]Li, X., Wang, X.F., 2006. Controlling the spreading in small-world evolving networks: stability, oscillation, and topology. IEEE Trans. Autom. Control, 51(3):534-540.
[12]Li, X., Wang, X.F., 2007. On the stability of epidemic spreading in small-world networks: how prompt the recovery should be? Int. J. Syst. Sci., 38(5):401-411.
[13]Li, X., Wang, X.F., Chen, G., 2004. Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circ. Syst. I, 51(10):2074-2087.
[14]Motter, A.E., 2004. Cascade control and defense in complex networks. Phys. Rev. Lett., 93(9):098701.
[15]Motter, A.E., Lai, Y.C., 2002. Cascade-based attacks on complex networks. Phys. Rev. E, 66(6):065102.
[16]Raimondo, D.M., Magni, L., Scattolini, R., 2007. Decentralized MPC of nonlinear systems: an input-to-state stability approach. Int. J. Rob. Nonl. Control, 17(17):1651-1667.
[17]Rawlings, J.B., Mayne, D.Q., 2009. Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison.
[18]Wang, W.X., Chen, G.R., 2008. Universal robustness characteristic of weighted networks against cascading failure. Phys. Rev. E, 77:026101.
[19]Wang, X.F., Chen, G.R., 2003. Complex networks: small-world, scale-free and beyond. IEEE Circ. Syst. Mag., 3(1):6-20.
[20]Wang, X.F., Xu, J., 2004. Cascading failures in coupled map lattices. Phys. Rev. E, 70:056113.
[21]Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of ‘small-world’ networks. Nature, 393(6684):440-442.
[22]Xiang, L.Y., Chen, Z.Q., Liu, Z.X., Chen, Z.Z., 2007. Stabilizing weighted complex networks. J. Phys. A, 40(48):14369-14382.
[23]Xu, J., Wang, X.F., 2005. Cascading failures in scale-free coupled map lattices. Phys. A, 349(3-4):685-692.
[24]Zheng, J.F., Gao, Z.Y., Zhao, X.M., 2007. Modeling cascading failures in congested complex networks. Phys. A, 385(2):700-706.
Open peer comments: Debate/Discuss/Question/Opinion
<1>