Full Text:   <2195>

Summary:  <1831>

CLC number: TN911.7; R318

On-line Access: 2014-12-05

Received: 2014-04-05

Revision Accepted: 2014-07-18

Crosschecked: 2014-11-18

Cited: 1

Clicked: 6506

Citations:  Bibtex RefMan EndNote GB/T7714




-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.12 P.1147-1153


Examination of the wavelet-based approach for measuring self-similarity of epileptic electroencephalogram data

Author(s):  Suparerk Janjarasjitt

Affiliation(s):  Department of Electrical and Electronic Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

Corresponding email(s):   suparerk.j@ubu.ac.th

Key Words:  Self-similarity, Power-law behavior, Wavelet analysis, Electroencephalogram, Epilepsy, Seizure

Suparerk Janjarasjitt. Examination of the wavelet-based approach for measuring self-similarity of epileptic electroencephalogram data[J]. Journal of Zhejiang University Science C, 2014, 15(12): 1147-1153.

@article{title="Examination of the wavelet-based approach for measuring self-similarity of epileptic electroencephalogram data",
author="Suparerk Janjarasjitt",
journal="Journal of Zhejiang University Science C",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Examination of the wavelet-based approach for measuring self-similarity of epileptic electroencephalogram data
%A Suparerk Janjarasjitt
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 12
%P 1147-1153
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400126

T1 - Examination of the wavelet-based approach for measuring self-similarity of epileptic electroencephalogram data
A1 - Suparerk Janjarasjitt
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 12
SP - 1147
EP - 1153
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400126

self-similarity or scale-invariance is a fascinating characteristic found in various signals including electroencephalogram (EEG) signals. A common measure used for characterizing self-similarity or scale-invariance is the spectral exponent. In this study, a computational method for estimating the spectral exponent based on wavelet transform was examined. A series of Daubechies wavelet bases with various numbers of vanishing moments were applied to analyze the self-similar characteristics of intracranial EEG data corresponding to different pathological states of the brain, i.e., ictal and interictal states, in patients with epilepsy. The computational results show that the spectral exponents of intracranial EEG signals obtained during epileptic seizure activity tend to be higher than those obtained during non-seizure periods. This suggests that the intracranial EEG signals obtained during epileptic seizure activity tend to be more self-similar than those obtained during non-seizure periods. The computational results obtained using the wavelet-based approach were validated by comparison with results obtained using the power spectrum method.


自相似性或尺度不变性是信号(包括脑电图信号)中的一个重要特征。本文基于小波变换介绍一种估计谱指数的计算方法。 提出1/过程基于小波分析的表征,验证其能有效估计用于表征自相似性的谱指数。 引入频域分析中的1/过程,介绍其基于小波分析的表征,提出基于小波分析的自相似性测量基本步骤。通过数据分析验证所提方法的正确性(图3-6)。 计算结果表明基于小波分析的1/过程能够有效估计表征自相似性的谱指数。小波变换方法适用于自相似或尺度不变的信号。基于小波分析估计得到的颅内脑电图信号谱指数与功率谱方法估计得到的数据相差无几。癫痫惊厥时较之非惊厥时段获取的颅内脑电图信号具有更高的自相似性。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abry, P., Goncalves, P., Flandrin, P., 1993. Wavelet-based spectral analysis of 1/f processes. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.237-240.

[2]Andrzejak, R.G., Lehnertz, K., Mormann, F., et al., 2001. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E, 64:061907.1-061907.8.

[3]Goldberger, A.L., 2006. Complex systems. Proc. Am. Thorac. Soc., 3:467-471.

[4]Goldberger, A.L., Amaral, L.A.N., Hausdorff, J.M., et al., 2002. Fractal dynamics in physiology: alterations with disease and aging. PNAS, 99(suppl 1):2466-2472.

[5]Janjarasjitt, S., 2014. Computational validation of fractal characterization by using the wavelet-based fractal analysis. J. Korean Phys. Soc., 64(6):780-785.

[6]Janjarasjitt, S., Loparo, K.A., 2009. Wavelet-based fractal analysis of the epileptic EEG signal. Int. Symp. on Intelligent Signal Processing and Communication Systems, p.127-130.

[7]Janjarasjitt, S., Loparo, K.A., 2010. Wavelet-based fractal analysis of multi-channel epileptic ECoG. IEEE Region 10 Conf. TENCON, p.373-378.

[8]Janjarasjitt, S., Loparo, K.A., 2013. Comparison of complexity measures using two complex system analysis methods applied to the epileptic ECoG. J. Korean Phys. Soc., 63(8):1659-1665.

[9]Janjarasjitt, S., Loparo, K.A., 2014a. Examination of scale-invariant characteristics of epileptic electroencephalograms using wavelet-based analysis. Comput. Electr. Eng., 40(5):1766-1773.

[10]Janjarasjitt, S., Loparo, K.A., 2014b. Scale-invariant behavior of epileptic ECoG. J. Med. Biol. Eng., in press.

[11]Joshi, V., Pachori, R.B., Vijesh, A., 2014. Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed. Signal Process. Contr., 9:1-5.

[12]Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., et al., 2002. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A, 316(1-4):87-114.

[13]Lopes, R., Betrouni, N., 2009. Fractal and multifractal analysis: a review. Med. Image Anal., 13(4):634-649.

[14]Mandelbrot, B.B., 1982. The Fractal Geometry of Nature. W.H. Freeman and Company, San Francisco, USA.

[15]Mandelbrot, B.B., van Ness, J.W., 1968. Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10(4):422-437.

[16]Pachori, R.B., 2008. Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res. Lett. Signal Process., 2008:293056.1-293056.5.

[17]Pachori, R.B., Patidar, S., 2014. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput. Method. Progr. Biomed., 113(2):494-502.

[18]Timashev, S.F., Polyakov, Y.S., 2007. Review of flicker noise spectroscopy in electrochemistry. Fluct. Noise Lett., 7(2):R15-R47.

[19]Timashev, S.F., Polyakov, Y.S., Yulmetyev, R.M., et al., 2009. Analysis of biomedical signals by flicker-noise spectroscopy: identification of photosensitive epilepsy using magnetoencephalograms. Laser Phys., 19(4):836-854.

[20]Timashev, S.F., Polyakov, Y.S., Misurkin, P.I., et al., 2010. Anomalous diffusion as a stochastic component in the dynamics of complex processes. Phys. Rev. E, 81:041128.1-041128.17.

[21]Timashev, S.F., Panischev, O.Y., Polyakov, Y.S., et al., 2012. Analysis of cross-correlations in electroencephalogram signals as an approach to proactive diagnosis of schizophrenia. Phys. A, 391(4):1179-1194.

[22]Watters, P.A., 1998. Fractal Structure in the Electroencephalogram. Available from http://www.complexity.org.au/ci/vol05/watters/watters.html

[23]Wornell, G.W., 1991. Synthesis, Analysis, and Processing of Fractal Signals. PhD Thesis, Massachusetts Institute of Technology, Massachusetts, USA.

[24]Wornell, G.W., 1993. Wavelet-based representations for the 1/f family of fractal processes. Proc. IEEE, 81(10):1428-1450.

[25]Wornell, G.W., 1995. Signal Processing with Fractals: a Wavelet-Based Approach. Prentice Hall, New Jersey, USA.

[26]Wornell, G.W., Oppenheim, A.V., 1992. Estimation of fractal signals from noisy measurements using wavelets. IEEE Trans. Signal Process., 40(3):611-623.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE