Full Text:   <4018>

CLC number: TP273; TB535

On-line Access: 2014-10-09

Received: 2014-01-20

Revision Accepted: 2014-07-03

Crosschecked: 2014-09-17

Cited: 3

Clicked: 3381

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.10 P.848-860


Advances in the control of mechatronic suspension systems

Author(s):  Wajdi S. Aboud, Sallehuddin Mohamed Haris, Yuzita Yaacob

Affiliation(s):  Centre for Automotive Research, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; more

Corresponding email(s):   wajdisadik@gmail.com, salleh@eng.ukm.my, yy@ftsm.ukm.my

Key Words:  Mechatronics, Active suspensions, Semi-active suspensions, Multiple model adaptive control

Wajdi S. Aboud, Sallehuddin Mohamed Haris, Yuzita Yaacob. Advances in the control of mechatronic suspension systems[J]. Journal of Zhejiang University Science C, 2014, 15(10): 848-860.

@article{title="Advances in the control of mechatronic suspension systems",
author="Wajdi S. Aboud, Sallehuddin Mohamed Haris, Yuzita Yaacob",
journal="Journal of Zhejiang University Science C",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Advances in the control of mechatronic suspension systems
%A Wajdi S. Aboud
%A Sallehuddin Mohamed Haris
%A Yuzita Yaacob
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 10
%P 848-860
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C14a0027

T1 - Advances in the control of mechatronic suspension systems
A1 - Wajdi S. Aboud
A1 - Sallehuddin Mohamed Haris
A1 - Yuzita Yaacob
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 10
SP - 848
EP - 860
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C14a0027

The suspension system is a key element in motor vehicles. Advancements in electronics and microprocessor technology have led to the realization of mechatronic suspensions. Since its introduction in some production motorcars in the 1980s, it has remained an area which sees active research and development, and this will likely continue for many years to come. With the aim of identifying current trends and future focus areas, this paper presents a review on the state-of-the-art of mechatronic suspensions. First, some commonly used classifications of mechatronic suspensions are presented. This is followed by a discussion on some of the actuating mechanisms used to provide control action. A survey is then reported on the many types of control approaches, including look-ahead preview, predictive, fuzzy logic, proportional–integral–derivative (PID), optimal, robust, adaptive, robust adaptive, and switching control. In conclusion, hydraulic actuators are most commonly used, but they impose high power requirements, limiting practical realizations of active suspensions. Electromagnetic actuators are seen to hold the promise of lower power requirements, and rigorous research and development should be conducted to make them commercially usable. Current focus on control methods that are robust to suspension parameter variations also seems to produce limited performance improvements, and future control approaches should be adaptive to the changeable driving conditions.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abdalla, M.O., Al Shabatat, N., Al Qaisi, M., 2008. Linear matrix inequality based control of vehicle active suspension system. Veh. Syst. Dynam., 47(1):121-134.

[2]Ab Talib, M.H., Mat Darns, I.Z., 2013. Self-tuning PID controller for active suspension system with hydraulic actuator. IEEE Symp. on Computers & Informatics, p.86-91.

[3]Akbari, A., Lohmann, B., 2010. Multi-objective H / GH2 preview control of active vehicle suspensions. Veh. Syst. Dynam., 48(12):1475-1494.

[4]Alleyne, A., Hedrick, J.K., 1995. Nonlinear adaptive control of active suspensions. IEEE Trans. Contr. Syst. Technol., 3(1):94-101.

[5]Altet, O., Moreau, X., Oustaloup, A., et al., 2003. The hydractive CRONE suspension: Operation principle and stability study. Proc. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., p.677-683.

[6]Appleyard, M., Wellstead, P.E., 1995. Active suspension: some background. IEE Proc.-Contr. Theory Appl., 142(2):123-128.

[7]Becker, M., Jaker, K.P., Fruhauf, F., et al., 1996. Development of an active suspension system for a Mercedes-Benz coach (o404). Proc. IEEE Int. Symp. on Computer-Aided Control System Design, p.146-151.

[8]BOSE, 2010. Resolving the Conflict Between Comfort and Control. Available from http://www.boseindia.com/the-bose-suspension-system/

[9]Chang, J.C., 2007. Analysis of series type and parallel type active suspension systems. Proc. Ta Hwa Institute of Technology Int. Conf., p.177-182.

[10]Chang, Y.C., Kuo, L.W., Wu, J.L., 2010. Reliable multi-objective decentralized controller design. Int. Conf. on System Science and Engineering, p.227-232.

[11]Changizi, N., Rouhani, M., 2011. Comparing PID and fuzzy logic control a quarter car suspension system. J. Math. Comput. Sci., 2(3):559-564.

[12]Chantranuwathana, S., Huei, P., 1999. Adaptive robust force control for vehicle active suspension. Proc. IEEE Int. Conf. on Control Applications, p.442-447.

[13]Chung, S., Shin, H., 2004. High-voltage power supply for semi-active suspension system with ER-fluid damper. IEEE Trans. Veh. Technol., 53(1):206-214.

[14]Codeca, F., Savaresi, S.M., Spelta, C., et al., 2008. Identification of an electro-hydraulic controllable shock absorber using black-block non-linear models. Proc. IEEE Int. Conf. on Control Applications, p.462-467.

[15]Corriga, G., Sanna, S., Usai, G., 1991. An optimal tandem active-passive suspension system for road vehicles with minimum power consumption. IEEE Trans. Ind. Electron., 38(3):210-216.

[16]Crews, J.H., Mattson, M.G., Buckner, G.D., 2011. Multi-objective control optimization for semi-active vehicle suspensions. J. Sound Vibr., 330(23):5502-5516.

[17]Delphi, 2005. Delphi Magneride. Available from http://www.motor-talk.de/forum/aktion/attachment.html?attachmentid=488981 [Accessed on May 22, 2011].

[18]Efatpenah, K., Beno, J.H., Nichols, S.P., 2000. Energy requirements of a passive and an electromechanical active suspension system. Veh. Syst. Dynam., 34(6):437-458.

[19]Elmadany, M.M., Qarmoush, A.O., 2011. Dynamic analysis of a slow-active suspension system based on a full car model. J. Vibr. Contr., 17(1):39-53.

[20]Fialho, I.J., Balas, G.J., 2000. Design of nonlinear controllers for active vehicle suspensions using parameter-varying control synthesis. Veh. Syst. Dynam., 33(5):351-370.

[21]Fialho, I.J., Balas, G.J., 2002. Road adaptive active suspension design using linear parameter-varying gain-scheduling. IEEE Trans. Contr. Syst. Technol., 10(1):43-54.

[22]Fijalkowski, B.T., 2011. Automotive Mechatronics: Operational and Practical. Springer, London.

[23]Fischer, D., Isermann, R., 2004. Mechatronic semi-active and active vehicle suspensions. Contr. Eng. Pract., 12(11):1353-1367.

[24]Gao, G.S., Yang, S.P., 2006. Semi-active control performance of railway vehicle suspension featuring magnetorheological dampers. Proc. 1st IEEE Conf. on Industrial Electronics and Applications, p.1-5.

[25]Gao, H., Lam, J., Wang, C., 2006. Multi-objective control of vehicle active suspension systems via load-dependent controllers. J. Sound Vibr., 290(3-5):654-675.

[26]Gavriloski, V., Danev, D., Angushev, K., 2007. Mechatronic approach in vehicle suspension system design. World Congr., 12:45-58.

[27]Genger, C., 2009. Active and Semi-active Suspension Control for Specific Point Isolation of Vehicles. MS Thesis, University of California, Davis, USA.

[28]Giorgetti, N., Bemporad, A., Tseng, H.E., et al., 2005. Hybrid model predictive control application towards optimal semi-active suspension. Proc. IEEE Int. Symp. on Industrial Electronics, p.391-398.

[29]Graves, K.E., Iovenitti, P.G., Toncich, D., 2000. Electromagnetic regenerative damping in vehicle suspension systems. Int. J. Veh. Des., 24(2/3):182-197.

[30]Guglielmino, E., Sireteanu, T., Stammers, C.W., et al., 2010. Semi-active Suspension Control: Improved Vehicle Ride and Road Friendliness. Springer, London.

[31]Gysen, B.L.J., Janssen, J.L.G., Paulides, J.J.H., et al., 2009. Design aspects of an active electromagnetic suspension system for automotive applications. IEEE Trans. Ind. Appl., 45(5):1589-1597.

[32]Gysen, B.L.J., Paulides, J.J.H., Janssen, J.L.G., et al., 2010. Active electromagnetic suspension system for improved vehicle dynamics. IEEE Trans. Veh. Technol., 59(3):1156-1163.

[33]Hac, A., 1987. Adaptive control of vehicle suspension. Veh. Syst. Dynam., 16(2):57-74.

[34]Heiring, B., Ersoy, M., 2011. Chassis Handbook: Fundamental, Driving Dynamics, Mechatronics, Perspectives. Springer, p.590.

[35]Hrovat, D., 1997. Survey of advanced suspension developments and related optimal control applications. Automatica, 33(10):1781-1817.

[36]Isermann, R., 2006. Automotive mechatronic systems—general developments and examples. Automatisierungstechnik, 54(9):419-429.

[37]Jamshidi, F., Shaabany, A., 2011. Robust control of an active suspension system using H2 & H control methods. J. Am. Sci., 7(5):1-5.

[38]Jonasson, M., Roos, F., 2008. Design and evaluation of an active electromechanical wheel suspension system. Mechatronics, 18(4):218-230.

[39]Jones, W.D., 2005. Easy ride: Bose Corp. uses speaker technology to give cars adaptive suspension. IEEE Spectrum, 42(5):12-14.

[40]Kaleemullah, M., Faris, W.F., Hasbullah, F., 2011. Design of robust H, fuzzy and LQR controller for active suspension of a quarter car model. 4th Int. Conf. on Mechatronics, p.1-6.

[41]Karnopp, D., 1983. Active damping in road vehicle suspension systems. Veh. Syst. Dynam., 12(6):291-311.

[42]Karnopp, D., 1986. Theoretical limitations in active vehicle suspensions. Veh. Syst. Dynam., 15(1):41-54.

[43]Karnopp, D., Margolis, D., 1984. Adaptive suspension concepts for road vehicles. Veh. Syst. Dynam., 13(3):145-160.

[44]Karnopp, D.C., Crosby, M.J., Harwood, R.A., 1974. Vibration control using semiactive force generators. ASME J. Eng. Ind., 96(2):619-626.

[45]Kim, H., Hyun, S.Y., Park, Y., 2002. Improving the vehicle performance with active suspension using road-sensing algorithm. Comput. Struct., 80(18-19):1569-1577.

[46]Koch, G.P.A., 2011. Adaptive Control of Mechatronic Vehicle Suspension. PhD Thesis, Technical University of Munich, Munich, Germany.

[47]Kruczek, A., Stribrsky, A., Honc, J., et al., 2010. Controller choice for car active suspension. Int. J. Mech., 3(4):61-68.

[48]Kumar, M.S., Vijayarangan, S., 2006. Design of LQR controller for active suspension system. Ind. J. Eng. Mater. Sci., 13:173-179.

[49]Lai, C.Y., Liao, W.H., 2002. Vibration control of a suspension system via a magnetorheological fluid damper. J. Vibr. Contr., 8(4):527-547.

[50]Lam, Q., Wang, L., Zhang, N., 2013. Experimental implimentation of a fuzzy controller for an active hydraulically interconnected suspension on a sport utility vehicle. IEEE Intelligent Vehicles Symp., p.383-390.

[51]Leite, V.J.S., Peres, P.L.D., 2005. Pole location control design of an active suspension system with uncertain parameters. Veh. Syst. Dynam., 43(8):561-579.

[52]Li, H., Yu, J., Hilton, C., et al., 2013. Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach. IEEE Trans. Ind. Electron., 60(8):3328-3338.

[53]Lin, J.S., Ioannis, K., 1997a. Nonlinear design of active suspensions. IEEE Contr. Syst., 17(3):45-59.

[54]Lin, J.S., Ioannis, K., 1997b. Road-adaptive nonlinear design of active suspensions. Proc. American Control Conf., p.714-718.

[55]Liu, H.M., Mok, T.K., Li, Y., et al., 2005. Comparison between GA and gradient descent algorithm in parameter optimization of UPFC fuzzy damping controller. Electr. Power Autom. Equipment, 25(11):5-10.

[56]Liu, L., Wang, B., 2008. Multi objective robust active vibration control for flexure jointed struts of stewart platforms via H and μ synthesis. Chin. J. Aeronaut., 21(2):125-133.

[57]Martins, I., Esteves, M., da Silva, F.P., et al., 1999. Electromagnetic hybrid active-passive vehicle suspension system. Proc. IEEE 49th Vehicular Technology Conf., p.125-133.

[58]Martins, I., Esteves, J., Marques, G.D., et al., 2006. Permanent-magnets linear actuators applicability in automobile active suspensions. IEEE Trans. Veh. Technol., 55(1):86-94.

[59]Moller, N., 2009. Porsche Engineering Magazine. Porsche Engineering, Germany, p.28.

[60]Nagai, M., 1993. Recent researches on active suspensions for ground vehicles. JSME Int. J. Ser. C, 36(2):161-170.

[61]Nurhadi, H., 2010. Study on Control of Bus Suspension System. Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember (ITS).

[62]Paulides, J.J.H., Encica, L., Lomonova, E.A., et al., 2006a. Active roll compensation for automotive applications using a brushless direct-drive linear permanent magnet actuator. 37th IEEE Power Electronics Specialists Conf., p.1-6.

[63]Paulides, J.J.H., Encica, L., Lomonova, E.A., et al., 2006b. Design considerations for a semi-active electromagnetic suspension system. IEEE Trans. Magnet., 42(10):3446-3448.

[64]Peter, H., 2012. ABC Active Body Control / MBC Magic Body Control. Available from http://500sec.com/abc-active-body-control-mbc-magic-body-control/ [Accessed on Apr. 12, 2011].

[65]Pyper, M., Schiffer, W., Schneider, W., 2003. ABC—Active Body Control. Landsberg/Lech: Verl. Moderne Industrie.

[66]Rajamani, R., 2011. Vehicle Dynamics and Control. Springer, p.325-355.

[67]Rajamani, R., Hedrick, J.K., 1995. Adaptive observers for active automotive suspensions: theory and experiment. IEEE Trans. Contr. Syst. Technol., 3(1):86-93.

[68]Ramsbottom, M., Crolla, D.A., 1999. Simulation of an adaptive controller for a limited bandwidth active suspension. Int. J. Veh. Des., 21(4/5):355-371.

[69]Ryu, S., Park, Y., Suh, M., 2011. Ride quality analysis of a tracked vehicle suspension with a preview control. J. Terramech., 48(6):409-417.

[70]Salem, M., Aly, A.A., 2009. Fuzzy control of a quarter-car suspension system. World Acad. Sci., 5:258-263.

[71]Sam, Y.M., Hudha, K., 2006. Modelling and force tracking control of hydraulic actuator for an active suspension system. 1st IEEE Conf. on Industrial Electronics and Applications, p.1-6.

[72]Sam, Y.M., Shah, J.H., Osman, B., 2005. Modeling and control of the active suspension system using proportional integral sliding mode approach. Asian J. Contr., 7(2):91-98.

[73]Savaresi, S., Poussot-Vassal, C., Spelta, C., et al., 2010. Semi-active Suspension Control Design for Vehicles. Butterworth-Heinemann, Amsterdam, the Netherlands.

[74]Sharp, R.S., Crolla, D.A., 1987. Road vehicle system design—a review. Veh. Syst. Dynam., 16(3):167-192.

[75]Shoukry, Y., El-Shafie, M., Hammad, S., 2010. Networked embedded generalized predictive controller for an active suspension system. Proc. American Control Conf., p.4570-4575.

[76]Smith, M.C., Walker, G.W., 2000. Performance limitations and constraints for active and passive suspensions: a mechanical multi-port approach. Veh. Syst. Dynam., 33(3):137-168.

[77]Strassberger, M., Guldner, J., 2004. BMW’s dynamic drive: an active stabilizer bar system. IEEE Contr. Syst., 24(4):28-29, 107.

[78]Stribrsky, A., Hyniova, K., Honcu, J., et al., 2007. Energy recuperation in automotive active suspension systems with linear electric motor. Mediterranean Conf. on Control and Automation, p.1-5.

[79]Sun, J., Wang, Y., Liang, H., 2010. Comparative study on vibration control of engineering vehicle suspension system. Int. Conf. on Intelligent Computation Technology and Automation, p.989-992.

[80]Sun, W., Zhao, Y., Li, J., et al., 2012. Active suspension control with frequency band constraints and actuator input delay. IEEE Trans. Ind. Electron., 59(1):530-537.

[81]Sun, W., Zhao, Z., Gao, H., 2013. Saturated adaptive robust control for active suspension systems. IEEE Trans. Ind. Electron., 60(9):3889-3896.

[82]Tran, M.N., Hrovat, D., 1993. Application of gain scheduling to design of active suspensions. Proc. 32nd IEEE Decision and Control Conf., p.1030-1035.

[83]Venhovens, P.J.T., 1993. Optimal Control of Vehicle Suspensions. PhD Thesis, Delft University of Technology, Delft, the Netherlands.

[84]Venhovens, P.J.T., 1994. The development and implementation of adaptive semi-active suspension control. Veh. Syst. Dynam., 23(1):211-235.

[85]Voelcker, J., 2008. The soul of a new Mercedes. IEEE Spectrum, 45(12):36-41.

[86]Williams, R.A., Best, A., 1994. Control of a low frequency active suspension. Int. Conf. on Control, p.338-343.

[87]Wu, W., Ma, L., Yang, Q., 2011. Active optimal control for multi-dim vibration damping device based on parallel mechanism. 2nd Int. Conf. on Mechanic Automation and Control Engineering, p.5531-5534.

[88]Xu, L., Guo, X., 2010. Hydraulic transmission electromagnetic energy-regenerative active suspension and its working principle. 2nd Int. Workshop on Intelligent Systems and Applications, p.1-5.

[89]Xue, X.D., Cheng, K.W.E., Zhang, Z., et al., 2011. Investigation on parameters of automotive electromagnetic active suspensions. 4th Int. Conf. on Power Electronics Systems and Applications, p.1-5.

[90]Yamashita, M., Fujimori, K., Uhlik, C., et al., 1990. H control of an automotive active suspension. Proc. 29th IEEE Conf. on Decision and Control, p.2244-2250.

[91]Zhang, Y., Alleyne, A., 2005. A practical and effective approach to active suspension control. Veh. Syst. Dynam., 43(5):305-330.

[92]Zhong, X., Ichchou, M., Gillot, F., et al., 2010. A dynamic-reliable multiple model adaptive controller for active vehicle suspension under uncertainties. Smart Mater. Struct., 19(4):045007.

[93]Zin, A., Sename, O., Gaspar, P., et al., 2008. Robust LPV-H control for active suspensions with performance adaptation in view of global chassis control. Veh. Syst. Dynam., 46(10):889-912.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE