CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-08-07
Cited: 1
Clicked: 11952
Zhou-zhou He, Zhong-fei Zhang, Chun-ming Chen, Zheng-gang Wang. E-commerce business model mining and prediction[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500148 @article{title="E-commerce business model mining and prediction", %0 Journal Article TY - JOUR
Abstract: In this paper, the authors have studied the problem of business model mining and prediction in the e-commerce context. Unlike the most existing approaches in the literature where this problem is typically formulated as a regression problem or as a time-series prediction problem, the authors of this paper have developed a different formulation to this problem by noting that these existing approaches fail to consider the potential relationships existing both among the consumers (consumer influence) and among the shops (competitions or collaborations). Authors did an excellent innovation on the methodology.
应用于电子商务环境的商业模式挖掘和预测方法创新点:首先,本文算法不仅考虑到消费者自身的特征,同时还考虑到存在于消费者之间的社会影响力,考虑到在真实的电子商务中,消费者之间传递商品的价格信息或评价信息十分便捷,因而本文算法很好地切合了实际的应用环境。其次,本文算法定义了交易环境中的两种社会影响力,即“同一商品中消费者互相作用产生的影响力”和“不同商品之间消费者互相作用产生的影响力”,分别考虑到单一商品的交易环境和多个商品互相作用的交易环境中消费者行为,其中以上两种社会影响力都是由真实消费者社交网络分析提炼得来的,使得本算法更加切合真实交易网络的内在结构。 方法:本文算法将商品销量分为主体部分和噪声部分,很好地模拟了真实交易环境中,商品销量的构成是受多成分影响的。并且在预测模型中,对主体部分和噪声部分分别设置了不同的约束条件,具体为要求商品销量的主体部分在时间上应该保持平滑性,并要求商品销量的噪声部分是稀疏的,以上两个约束很好地反映了真实交易环境中商品销量的变化形式。 结论:本文研究电子商务环境下商品销量的发展模式,并提出描述消费者之间关系的两种社会影响力网络。将此社会影响力网络整合入商品销量构成模型中,最后提出对这些商品销量的预测算法。特别是通过在真实的数据环境中(阿里巴巴女装数据)进行算法测试,并结合与传统销量预测算法的比较,展示在复杂数据环境下本算法的有效性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Anagnostopoulos, A., Kumar, R., Mahdian, M., 2008. Influence and correlation in social networks. Proc. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.7-15. ![]() [2]Anagnostopoulos, A., Brova, G., Terzi, E., 2011. Peer and authority pressure in information-propagation models. LNCS, 6911:76-91. ![]() [3]Bakshy, E., Hofman, J.M., Mason, W.A., et al., 2011. Everyone’s an influencer: quantifying influence on Twitter. Proc. 4th ACM Int. Conf. on Web Search and Data Mining, p.65-74. ![]() [4]Bakshy, E., Rosenn, I., Marlow, C., et al., 2012. The role of social networks in information diffusion. Proc. 21st Int. Conf. on World Wide Web, p.519-528. ![]() [5]Bernstein, M.S., Bakshy, E., Burke, M., et al., 2013. Quantifying the invisible audience in social networks. Proc. SIGCHI Conf. on Human Factors in Computing Systems, p.21-30. ![]() [6]Bhagat, S., Goyal, A., Lakshmanan, L.V.S., 2012. Maximizing product adoption in social networks. Proc. 5th ACM Int. Conf. on Web Search and Data Mining, p.603-612. ![]() [7]Bonchi, F., Castillo, C., Gionis, A., et al., 2011. Social network analysis and mining for business applications. ACM Trans. Intell. Syst. Technol., 2(3), Article 22. ![]() [8]Box, G.E.P., 2008. Time Series Analysis: Forecasting and Control. Wiley. ![]() [9]Boyd, S., Parikh, N., Chu, E., et al., 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1):1-122. ![]() [10]Cha, M., Haddadi, H., Benevenuto, F., et al., 2010. Measuring user influence in Twitter: the million follower fallacy. Proc. 4th Int. AAAI Conf. on Weblogs and Social Media, p.10-17. ![]() [11]Cui, P., Jin, S.F., Yu, L.Y., et al., 2013. Cascading outbreak prediction in networks: a data-driven approach. Proc. 19th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.901-909. ![]() [12]Dholakia, U.M., Bagozzi, R.P., Pearo, L.K., 2004. A social influence model of consumer participation in network- and small-group-based virtual communities. Int. J. Res. Market., 21(3):241-263. ![]() [13]Donoho, D.L., Johnstone, I.M., 1995. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Assoc., 90(432):1200-1224. ![]() [14]Duong, Q., Wellman, M.P., Singh, S.P., 2011. Modeling information diffusion in networks with unobserved links. SocialCom/PASSAT, p.362-369. ![]() [15]Eagle, N., Pentland, A., Lazer, D., 2009. Inferring friendship network structure by using mobile phone data. PNAS, 106(36):15274-15278. ![]() [16]Friedman, J., Hastie, T., Höfling, H., et al., 2007. Pathwise coordinate optimization. Ann. Appl. Statist., 1(2):302-332. ![]() [17]Gomez-Rodriguez, M., Schölkopf, B., 2012. Influence maximization in continuous time diffusion networks. Int. Conf. on Machine Learning. ![]() [18]Gomez-Rodriguez, M., Leskovec, J., Krause, A., 2010. Inferring networks of diffusion and influence. Proc. 16th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.1019-1028. ![]() [19]Guille, A., Hacid, H., Favre, C., et al., 2013. Information diffusion in online social networks: a survey. ACM SIGMOD Rec., 42(1):17-28. ![]() [20]Hoefling, H., 2010. A path algorithm for the fused lasso signal approximator. J. Comput. Graph. Statist., 19(4):984-1006. ![]() [21]Long, B., Zhang, Z.F., Yu, P.S., 2007. A probabilistic framework for relational clustering. Proc. 13th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.470-479. ![]() [22]Myers, S.A., Leskovec, J., 2012. Clash of the contagions: cooperation and competition in information diffusion. IEEE 12th Int. Conf. on Data Mining, p.539-548. ![]() [23]Myers, S.A., Zhu, C.G., Leskovec, J., 2012. Information diffusion and external influence in networks. Proc. 18th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.33-41. ![]() [24]Onnela, J.P., Reed-Tsochas, F., 2010. Spontaneous emergence of social influence in online systems. PNAS, 107(43):18375-18380. ![]() [25]Romero, D.M., Galuba, W., Asur, S., et al., 2011. Influence and passivity in social media. European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, p.18-33. ![]() [26]Saito, K., Ohara, K., Yamagishi, Y., et al., 2011. Learning diffusion probability based on node attributes in social networks. 19th Int. Symp. on Foundations of Intelligent Systems, p.153-162. ![]() [27]Tang, J., Sun, J.M., Wang, C., et al., 2009. Social influence analysis in large-scale networks. Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.807-816. ![]() [28]Tibshirani, R., Saunders, M., Rosset, S., et al., 2005. Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B, 67(1):91-108. ![]() [29]Tsur, O., Rappoport, A., 2012. What’s in a hashtag?: content based prediction of the spread of ideas in microblogging communities. Proc. 5th ACM Int. Conf. on Web Search and Data Mining, p.643-652. ![]() [30]Wu, S.M., Hofman, J.M., Mason, W.A., et al., 2011. Who says what to whom on Twitter. Proc. 20th Int. Conf. on World Wide Web, p.705-714. ![]() [31]Yang, J., Leskovec, J., 2010. Modeling information diffusion in implicit networks. IEEE 10th Int. Conf. on Data Mining, p.599-608. ![]() [32]Zhang, Z.F., Salerno, J.J., Yu, P.S., 2003. Applying data mining in investigating money laundering crimes. Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.747-752. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>