CLC number: TP309.7
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-12-30
Cited: 4
Clicked: 8535
Jia Xie, Yu-pu Hu, Jun-tao Gao, Wen Gao. Efficient identity-based signature over NTRU lattice[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500197 @article{title="Efficient identity-based signature over NTRU lattice", %0 Journal Article TY - JOUR
Abstract: The authors propose a new efficient identity-based signature scheme based on the NTRU construction. Security is analyzed in the Random Oracle Model under the approximate Ideal-SVP assumption over the NTRU lattice. The proposed scheme is more efficient in the communication overhead. This topic belongs to the hot topic in the cryptography.
NTRU格上基于身份签名的高效方案创新点:将抛弃采样技术扩展到NTRU格上,并利用NTRU格上的SIS问题构造了NTRU格上的首个可证安全的基于身份的签名方案,使得签名效率显著提高,并很大程度地降低了公钥尺寸。 方法:首先,明确NTRU格的定义,提出NTRU格上的小整数解问题(SIS),即定义5,指出该困难问题在量子计算环境下是安全的。然后,将抛弃采样技术扩展到NTRU格上(算法6),利用扩展后的抛弃采样技术构造NTRU格上的基于身份的签名方案,详见算法4-7。该方案的安全性依赖于所提出的NTRU格上的SIS问题,因而该方案在量子计算环境下仍然是安全的,并且其通信复杂度较低(详见表1-2)。 结论:将抛弃采样技术扩展到NTRU格上,并构造了NTRU格上首个基于身份的签名方案,该签名方案与普通格上的基于身份的签名方案相比,效率更高,公钥尺寸更小。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Babai, L., 1986. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):1-13. ![]() [2]Barreto, P.S.L.M., Libert, B., McCullagh, N., et al., 2005. Efficient and provably-secure identity-based signatures and signcryption from bilinear maps. 11th Int. Conf. on the Theory and Application of Cryptology and Information Security, p.515-532. ![]() [3]Bernstein, D.J., 2009. Introduction to post-quantum cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (Eds.), Post-Quantum Cryptography. Springer-Verlag, Berlin, p.1-14. ![]() [4]Boneh, D., Franklin, M., 2001. Identity based encryption from the Weil pairing. 21st Annual Int. Cryptology Conf., p.213-229. ![]() [5]Desmedt, Y., Quisquater, J.J., 1987. Public-key systems based on the difficulty of tampering (Is there a difference between DES and RSA?). LNCS, 263:111-117. ![]() [6]Ducas, L., Lyubashevsky, V., Prest, T., 2014. Efficient identity-based encryption over NTRU lattice. 20th Int. Conf. on the Theory and Application of Cryptology and Information Security, p.22-41. ![]() [7]Gentry, C., Peikert, C., Vaikuntanathan, V., 2008. Trapdoors for hard lattices and new cryptographic constructions. 40th Annual ACM Symp. on Theory of Computing, p.197-206. ![]() [8]Hess, F., 2003. Efficient identity based signature schemes based on pairings. 9th Annual Int. Workshop on Selected Areas in Cryptography, p.310-324. ![]() [9]Krenn, M., Huber, M., Fickler, R., et al., 2014. Generation and confirmation of a (100×100)-dimensional entangled quantum system. PNAS, 111(17):6243-6247. ![]() [10]Li, F.G., Muhaya, F.T.B., Khan, M.K., et al., 2012. Lattice-based signcryption. Concurr. Comput. Pract. Exp., 25(14):2112-2122. ![]() [11]Liu, Z.H., Hu, Y.P., Zhang, X.S., et al., 2013. Efficient and strongly unforgeable identity-based signature scheme from lattices in the standard model. Secur. Commun. Network., 6(1):69-77. ![]() [12]Lyubashevsky, V., 2012. Lattice signatures without trapdoors. 31st Annual Int. Conf. on the Theory and Applications of Cryptographic Techniques, p.738-755. ![]() [13]Maurer, U.M., Yacobi, Y., 1991. Non-interactive public-key cryptography. Workshop on the Theory and Application of Cryptographic Techniques, p.498-507. ![]() [14]Micciancio, D., Regev, O., 2009. Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (Eds.), Post-Quantum Cryptography. Springer-Verlag, Berlin, p.147-191. ![]() [15]Nguyen, P.Q., Regev, O., 2006. Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. 24th Annual Int. Conf. on the Theory and Applications of Cryptographic Techniques, p.271-288. ![]() [16]Paterson, K.G., Schuldt, J.C.N., 2006. Efficient identity-based signatures secure in the standard model. 11th Australasian Conf. on Information Security and Privacy, p.207-222. ![]() [17]Rückert, M., 2010. Strongly unforgeable signatures and hierarchical identity-based signatures from lattices without random oracles. Proc. 3rd Int. Workshop on PQCrypto, p.182-200. ![]() [18]Shamir, A., 1984. Identity-based cryptosystems and signature schemes. Proc. CRYPTO, p.47-53. ![]() [19]Shor, P.W., 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484-1509. ![]() [20]Stehlé, D., Steinfeld, R., 2013. Making NTRUEncrypt and NTRUSign as secure as standard worst-case problems over ideal lattices. Cryptology ePrint Archive 2013/004. Available from http://eprint.iacr.org/2013/004. ![]() [21]Tanaka, H., 1987. A realization scheme for the identity-based cryptosystem. CRYPTO, p.341-349. ![]() [22]Tian, M.M., Huang, L.S., 2014. Efficient identity-based signature from lattices. Proc. 29th IFIP TC 11 Int. Conf., p.321-329. ![]() [23]Tian, M.M., Huang, L.S., Yang, W., 2013. Efficient hierachical identity-based signatures from lattices. Int. J. Electron. Secur. Dig. Forens., 5(1):1-10. ![]() [24]Tsuji, S., Itoh, T., 1989. An ID-based cryptosystem based on the discrete logarithm problem. IEEE J. Sel. Areas Commun., 7(4):467-473. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>