CLC number: TP274+.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-04-11
Cited: 2
Clicked: 7509
Xie Wang, Mei-qin Liu, Zhen Fan, Sen-lin Zhang. A novel approach of noise statistics estimate using H∞ filter in target tracking[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500262 @article{title="A novel approach of noise statistics estimate using H∞ filter in target tracking", %0 Journal Article TY - JOUR
Abstract: This paper deals with the noise statistics estimation problem in target tracking. By introducing the H∞ filter instead of other conventional filters, more accurate noise samples could be obtained, which would lead to more exact estimates of noise mean and covariance. Overall, this paper is interesting and of some significance.
目标跟踪中一种新的基于H∞滤波器的噪声统计特征估计方法创新点:假设噪声为高斯分布,但不需要噪声统计特征的先验知识;在算法设计中引入H∞滤波器,获得更准确的残差信息。 方法:假设噪声统计特征的先验知识未知,通过H∞滤波器获得系统状态估计;通过得到的系统状态估计值和量测值,可以得到残差样本序列;结合数理统计知识,通过得到的残差样本序列对过程噪声和量测噪声的均值、协方差进行估计。 结论:与基于卡尔曼滤波器的同一框架下得到的估计方法相比,本文中的算法可以得到更精确的估计结果(图2、4-6)。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alouani, A.T., Blair, W.D., 1993. Use of a kinematic constraint in tracking constant speed, maneuvering targets. IEEE Trans. Autom. Contr., 38(7):1107-1111. ![]() [2]Alspach, D.L., Scharf, L.L., Abiri, A., 1974. A Bayesian solution to the problem of state estimation in an unknown noise environment. Int. J. Contr., 19(2):265-287. ![]() [3]Assa, A., Janabi-Sharifi, F., 2014. A robust vision-based sensor fusion approach for real-time pose estimation. IEEE Trans. Cybern., 44(2):217-227. ![]() [4]Banavar, R.N., 1992. A Game Theoretic Approach to Linear Dynamic Estimation. PhD Thesis, Texas University, Austin, USA. ![]() [5]Bavdekar, V.A., Deshpande, A.P., Patwardhan, S.C., 2011. Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. J. Process Contr., 21(4):585-601. ![]() [6]Bélanger, P.R., 1974. Estimation of noise covariance matrices for a linear time-varying stochastic process. Automatica, 10(3):267-275. ![]() [7]Bohlin, T., 1976. Four cases of identification of changing systems. Math. Sci. Eng., 126:441-518. ![]() [8]Carew, B., Belanger, P., 1973. Identification of optimum filter steady-state gain for systems with unknown noise covariances. IEEE Trans. Autom. Contr., 18(6):582-587. ![]() [9]Duník, J., Straka, O., Šimandl, M., 2015. Estimation of noise covariance matrices for linear systems with nonlinear measurements. Proc. 17th Symp. on System Identification, p.1130-1135. ![]() [10]Feng, B., Fu, M., Ma, H., et al., 2014. Kalman filter with recursive covariance estimation—sequentially estimating process noise covariance. IEEE Trans. Ind. Electron., 61(11):6253-6263. ![]() [11]Fu, X., Jia, Y., Du, J., et al., 2013. H∞ filtering with diagonal interacting multiple model algorithm for maneuvering target tracking. Proc. American Control Conf., p.6187-6192. ![]() [12]Gales, M.J.F., 2009. Acoustic modelling for speech recognition: hidden Markov models and beyond? Proc. IEEE Workshop on Automatic Speech Recognition & Understanding, p.44. ![]() [13]Jiang, T.Y., Liu, M.Q., Wang, X., et al., 2014. An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(6):445-457. ![]() [14]Jwo, D.J., Huang, C.M., 2007. An adaptive fuzzy strong tracking Kalman filter for GPS/INS navigation. Proc. 33rd Annual Conf. of the IEEE Industrial Electronics Society, p.2266-2271. ![]() [15]Li, W., Jia, Y., 2010. Distributed interacting multiple model H∞ filtering fusion for multiplatform maneuvering target tracking in clutter. Signal Process., 90(5):1655-1668. ![]() [16]Li, X.R., Bar-Shalom, Y., 1994. A recursive multiple model approach to noise identification. IEEE Trans. Aerosp. Electron. Syst., 30(3):671-684. ![]() [17]Li, X.R., Jilkov, V.P., 2005. Survey of maneuvering target tracking. Part V: multiple-model methods. IEEE Trans. Aerosp. Electron. Syst., 41(4):1255-1321. ![]() [18]Mazor, E., Averbuch, A., Bar-Shalom, Y., et al., 1998. Interacting multiple model methods in target tracking: a survey. IEEE Trans. Aerosp. Electron. Syst., 34(1):103-123. ![]() [19]Mehra, R., 1972. Approaches to adaptive filtering. IEEE Trans. Autom. Contr., 17(5):693-698. ![]() [20]Myers, K., Tapley, B., 1976. Adaptive sequential estimation with unknown noise statistics. IEEE Trans. Autom. Contr., 21(4):520-523. ![]() [21]Odelson, B.J., Rajamani, M.R., Rawlings, J.B., 2006. A new autocovariance least-squares method for estimating noise covariances. Automatica, 42(2):303-308. ![]() [22]Rabiner, L.R., 1990. A tutorial on hidden Markov models and selected applications in speech recognition. In: Waibel, A., Lee, K.F. (Eds.), Readings in Speech Recognition. Morgan Kaufmann Publishers Inc., USA, p.267-296. ![]() [23]Rawicz, P.L., 2000. H∞/H2/Kalman Filtering of Linear Dynamical Systems via Variational Techniques with Applications to Target Tracking}. PhD Thesis, Drexel University, Philadelphia, USA. ![]() [24]Shen, X., Deng, L., 1997. Game theory approach to discrete H∞ filter design. IEEE Trans. Signal Process., 45(4):1092-1095. ![]() [25]Simon, D., 2006. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. Wiley, New York, USA. ![]() [26]Yadav, A., Naik, N., Ananthasayanam, M.R., et al., 2012. A constant gain Kalman filter approach to target tracking in wireless sensor networks. Proc. 7th IEEE Int. Conf. on Industrial and Information Systems, p.1-7. ![]() [27]Yaesh, I., Shaked, U., 1991. A transfer function approach to the problems of discrete-time systems: H∞-optimal linear control and filtering. IEEE Trans. Autom. Contr., 36(11):1264-1271. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>