CLC number: TP242.6
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-05-18
Cited: 0
Clicked: 7712
Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. Intelligent computing budget allocation for on-road trajectory planning based on candidate curves[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500269 @article{title="Intelligent computing budget allocation for on-road trajectory planning based on candidate curves", %0 Journal Article TY - JOUR
Abstract: This is a nice paper presenting useful and interesting algorithms and applications. The application is novel and highly interesting.
基于候选曲线的公路轨迹规划中的智能计算量分配创新点:提出基于智能计算量分配(ICBA)的轨迹规划算法框架;设计曲线评价预测模型和优质曲线选拔模型,提出基于ICBA的轨迹规划算法IOODE。 方法:基于对优质曲线迭代分配计算量的思想,设计智能计算量分配(ICBA)机制,提出基于ICBA的轨迹规划算法框架(图4);设计曲线评价预测模型(EPM)和优质曲线选拔模型(CSM),提出基于ICBA的轨迹规划算法IOODE;通过仿真分析IOODE算法的轨迹规划结果(图9、10),验证所提出计算量分配机制的有效性(图12、13)和ICBA对算法效率的提升作用(图14、表5)。 结论:本文中提出的IOODE算法与OODE算法相比,求解质量没有明显区别,但求解速度提升约20%(表5)。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bai, L., Jiang, Y., Huang, D., 2012. A novel two-level optimization framework based on constrained ordinal optimization and evolutionary algorithms for scheduling of multipipeline crude oil blending. Ind. Eng. Chem. Res., 51(26):9078-9093. ![]() [2]Bechhofer, R.E., Santner, T.J., Goldsman, D.M., 1995. Design and Analysis of Experiments for Statistical Selection, Screening, and Multiple Comparisons. Wiley, New York, USA. ![]() [3]Bengler, K., Dietmayer, K., Farber, B., et al., 2014. Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag., 6(4):6-22. ![]() [4]Branke, J., Chick, S.E., Schmidt, C., 2007. Selecting a selection procedure. Manag. Sci., 53(12):1916-1932. ![]() [5]Chen, C., Lee, L.H., 2010. Stochastic Simulation Optimization: an Optimal Computing Budget Allocation. World Scientific, USA. ![]() [6]Chen, C., Yücesan, E., 2005. An alternative simulation budget allocation scheme for efficient simulation. Int. J. Simul. Process Model., 1(1/2):49-57. ![]() [7]Chen, C., Lin, J., Yücesan, E., et al., 2000. Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discr. Event Dyn. Syst., 10(3):251-270. ![]() [8]Chen, C., Chick, S.E., Lee, L.H., et al., 2015. Ranking and selection: efficient simulation budget allocation. In: Fu, M.C. (Ed.), Handbook of Simulation Optimization. Springer, New York, USA. ![]() [9]Chick, S.E., Inoue, K., 2001. New two-stage and sequential procedures for selecting the best simulated system. Oper. Res., 49(5):732-743. ![]() [10]Chu, K., Lee, M., Sunwoo, M., 2012. Local path planning for off-road autonomous driving with avoidance of static obstacles. IEEE Trans. Intell. Transp. Syst., 13(4):1599-1616. ![]() [11]Fu, X., Jiang, Y., Huang, D., et al., 2015. A novel real-time trajectory planning algorithm for intelligent vehicles. Contr. Dec., 30(10):1751-1758 (in Chinese). ![]() [12]Gehrig, S.K., Stein, F.J., 2007. Collision avoidance for vehicle-following systems. IEEE Trans. Intell. Transp. Syst., 8(2):233-244. ![]() [13]Glaser, S., Vanholme, B., Mammar, S., et al., 2010. Maneuver-based trajectory planning for highly autonomous vehicles on real road with traffic and driver interaction. IEEE Trans. Intell. Transp. Syst., 11(3):589-606. ![]() [14]Hilgert, J., Hirsch, K., Bertram, T., et al., 2003. Emergency path planning for autonomous vehicles using elastic band theory. Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.1390-1395. ![]() [15]Ho, Y., Zhao, Q., Jia, Q., 2007. Ordinal Optimization: Soft Optimization for Hard Problems. Springer, New York, USA. ![]() [16]Kim, S., Nelson, B.L., 2001. A fully sequential procedure for indifference-zone selection in simulation. ACM Trans. Model. Comput. Simul., 11(3):251-273. ![]() [17]Köhler, S., Schreiner, B., Ronalter, S., et al., 2013. Autonomous evasive maneuvers triggered by infrastructure-based detection of pedestrian intentions. Proc. IEEE Intelligent Vehicles Symp., p.519-526. ![]() [18]Kuwata, Y., Teo, J., Fiore, G., et al., 2009. Real-time motion planning with applications to autonomous urban driving. IEEE Trans. Contr. Syst. Technol., 17(5):1105-1118. ![]() [19]Ma, L., Xue, J., Kawabata, K., et al., 2015. Efficient sampling-based motion planning for on-road autonomous driving. IEEE Trans. Intell. Transp. Syst., 16(4):1961-1976. ![]() [20]McNaughton, M., Urmson, C., Dolan, J.M., et al., 2011. Motion planning for autonomous driving with a conformal spatiotemporal lattice. Proc. IEEE Int. Conf. on Robotics and Automation, p.4889-4895. ![]() [21]Montemerlo, M., Becker, J., Bhat, S., et al., 2008. Junior: the Stanford entry in the urban challenge. J. Field Robot., 25(9):569-597. ![]() [22]Papadimitriou, I., Tomizuka, M., 2003. Fast lane changing computations using polynomials. Proc. American Control Conf., p.48-53. ![]() [23]Reif, J.H., 1979. Complexity of the mover’s problem and generalizations. Proc. 20th Annual Symp. on Foundations of Computer Science, p.421-427. ![]() [24]Urmson, C., Anhalt, J., Bagnell, D., et al., 2008. Autonomous driving in urban environments: boss and the urban challenge. J. Field Robot., 25(8):425-466. ![]() [25]Ziegler, J., Stiller, C., 2009. Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1879-1884. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>