CLC number: TN911.7; O29
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-01-14
Cited: 4
Clicked: 12898
Meng-di Jiang, Yi Li, Wei Liu. Properties of a general quaternion-valued gradient operator and its applications to signal processing[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500334 @article{title="Properties of a general quaternion-valued gradient operator and its applications to signal processing", %0 Journal Article TY - JOUR
一般四元数函数梯度的定义、特性及在信号处理领域的应用创新点:在信号处理中,虽然很多优化函数的值都是实数,但在进行优化时,尤其是在非线性信号处理中,经常会遇到对取值为四元数的四元数函数求梯度。不同于以往只适用于实数值四元数函数梯度的定义,本文第一次就一般四元数函数的梯度给出了一个自洽的定义,并对其特性进行了详细的研究和描述。基于以上研究,本文对四元数值的最小均方(LMS)自适应算法,以及一个有代表性的非线性自适应算法进行了推导,并以矢量传感器阵列波束形成为例进行了计算机模拟。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Barthelemy, Q., Larue, A., Mars, J.I., 2014. About QLMS derivations. IEEE Signal Process. Lett., 21(2):240-243. ![]() [2]Brandwood, D.H., 1983. A complex gradient operator and its application in adaptive array theory. IEE Proc. F, 130(1):11-16. ![]() [3]Compton, R.T., 1981. On the performance of a polarization sensitive adaptive array. IEEE Trans. Antenn. Propag., 29(5):718-725. ![]() [4]Ell, T.A., Sangwine, S.J., 2007. Quaternion involutions and anti-involutions. Comput. Math. Appl., 53(1):137-143. ![]() [5]Ell, T.A., Le Bihan, N., Sangwine, S.J., 2014. Quaternion Fourier Transforms for Signal and Image Processing. Wiley, UK. ![]() [6]Gentili, G., Struppa, D.C., 2007. A new theory of regular functions of a quaternionic variable. Adv. Math., 216(1):279-301. ![]() [7]Hawes, M., Liu, W., 2015. Design of fixed beamformers based on vector-sensor arrays. Int. J. Antenn. Propag., 2015:181937.1-181937.9. ![]() [8]Jiang, M.D., Li, Y., Liu, W., 2014a. Properties and applications of a restricted HR gradient operator. arXiv:1407.5178. ![]() [9]Jiang, M.D., Liu, W., Li, Y., 2014b. A general quaternion-valued gradient operator and its applications to computational fluid dynamics and adaptive beamforming. Proc. 19th Int. Conf. on Digital Signal Processing, p.821-826. ![]() [10]Jiang, M.D., Liu, W., Li, Y., 2014c. A zero-attracting quaternion-valued least mean square algorithm for sparse system identification. Proc. 9th Int. Symp. on Communication Systems, Networks and Digital Signal Processing, p.596-599. ![]() [11]Le Bihan, N., Mars, J., 2004. Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing. Signal Process., 84(7):1177-1199. ![]() [12]Le Bihan, N., Miron, S., Mars, J.I., 2007. MUSIC algorithm for vector-sensors array using biquaternions. IEEE Trans. Signal Process., 55(9):4523-4533. ![]() [13]Li, J., Compton, R.T., 1991. Angle and polarization estimation using ESPRIT with a polarization sensitive array. IEEE Trans. Antenn. Propag., 39:1376-1383. ![]() [14]Liu, H., Zhou, Y.L., Gu, Z.P., 2014. Inertial measurement unit-camera calibration based on incomplete inertial sensor information. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(11):999-1008. ![]() [15]Liu, W., 2014. Antenna array signal processing for a quaternion-valued wireless communication system. Proc. IEEE Benjamin Franklin Symp. on Microwave and Antenna Sub-systems, arXiv:1504.02921. ![]() [16]Liu, W., Weiss, S., 2010. Wideband Beamforming: Concepts and Techniques. Wiley, UK. ![]() [17]Mandic, D.P., Jahanchahi, C., Took, C.C., 2011. A quaternion gradient operator and its applications. IEEE Signal Process. Lett., 18(1):47-50. ![]() [18]Miron, S., Le Bihan, N., Mars, J.I., 2006. Quaternion-MUSIC for vector-sensor array processing. IEEE Trans. Signal Process., 54(4):1218-1229. ![]() [19]Parfieniuk, M., Petrovsky, A., 2010. Inherently lossless structures for eight- and six-channel linear-phase paraunitary filter banks based on quaternion multipliers. Signal Process., 90(6):1755-1767. ![]() [20]Pei, S.C., Cheng, C.M., 1999. Color image processing by using binary quaternion-moment-preserving thresholding technique. IEEE Trans. Image Process., 8(5):614-628. ![]() [21]Roberts, M.K., Jayabalan, R., 2015. An improved low-complexity sum-product decoding algorithm for low-density parity-check codes. Front. Inform. Technol. Electron. Eng., 16(6):511-518. ![]() [22]Sangwine, S.J., Ell, T.A., 2000. The discrete Fourier transform of a colour image. Proc. Image Processing II: Mathematical Methods, Algorithms and Applications, p.430-441. ![]() [23]Talebi, S.P., Mandic, D.P., 2015. A quaternion frequency estimator for three-phase power systems. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.3956-3960. ![]() [24]Talebi, S.P., Xu, D.P., Kuh, A., et al., 2014. A quaternion least mean phase adaptive estimator. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.6419-6423. ![]() [25]Tao, J.W., 2013. Performance analysis for interference and noise canceller based on hypercomplex and spatio-temporal-polarisation processes. IET Radar Sonar Navig., 7(3):277-286. ![]() [26]Tao, J.W., Chang, W.X., 2014. Adaptive beamforming based on complex quaternion processes. Math. Prob. Eng., 2014:291249.1-291249.10. ![]() [27]Zhang, X.R., Liu, W., Xu, Y.G., et al., 2014. Quaternion-valued robust adaptive beamformer for electromagnetic vector-sensor arrays with worst-case constraint. Signal Process., 104:274-283. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>