CLC number: TN402
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-12-23
Cited: 0
Clicked: 7258
Zamshed Iqbal Chowdhury, Md. Istiaque Rahaman, M. Shamim Kaiser. Electrical analysis of single-walled carbon nanotube as gigahertz on-chip interconnects[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500349 @article{title="Electrical analysis of single-walled carbon nanotube as gigahertz on-chip interconnects", %0 Journal Article TY - JOUR
Abstract: In this paper, the authors proposed a mathematical model for high frequency analysis of CNT interconnects. The overall quality is good.
千兆赫片上互联单壁纳米碳管电分析关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Allan, A., Edenfeld, D., Joyner, W.H., et al., 2002. 2001 technology roadmap for semiconductors. Computer, 35(1):42-53. ![]() [2]Anantram, M.P., Léonard, F., 2006. Physics of carbon nano-tube electronic devices. Rep. Prog. Phys., 69(3):507-561. ![]() [3]Baughman, R.H., Zakhidov, A.A., de Heer, W.A., 2002. Carbon nanotubes–-the route toward applications. Science, 297(5582):787-792. ![]() [4]Burke, P.J., 2002a. Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol., 1(3):129-144. ![]() [5]Burke, P.J., 2002b. An RF circuit model for carbon nano-tubes. Proc. 2nd IEEE Conf. on Nanotechnology, p.393-396. ![]() [6]Cursaru, D., Enescu, D., Ciuparu, D., 2011. Control of (n, m) selectivity in single wall carbon nanotubes (SWNT) growth by varying the Co-Ni ratio in bi-metallic Co-Ni-MCM 41 catalysts. Rev. Chim.-Bucharest, 62(7):792-798. ![]() [7]Dragoman, M., Grenier, K., Dubuc, D., et al., 2006. Experimental determination of microwave attenuation and electrical permittivity of double-walled carbon nano-tubes. Appl. Phys. Lett., 8(15):1-3. ![]() [8]Fagan, A.J., Hároz, E.H., Ihly, R., et al., 2015. Isolation of >1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction. ACS Nano, 9(5):5377-5390. ![]() [9]Galand, R., Brunetti, G., Arnaud, L., et al., 2013. Microstructural void environment characterization by electron imaging in 45 nm technology node to link electromigration and Copper microstructure. Microelectron. Eng., 106:168-171. ![]() [10]Huang, C.Y., Hu, C.Y., Pan, H.C., et al., 2005. Electrooptical responses of carbon nanotube-doped liquid crystal devices. Jpn. J. Appl. Phys., 44(11):8077-8081. ![]() [11]Iqbal, M.Z., Puigdemont, J.P., Eom, J., et al., 2014. High-frequency impedance of single-walled carbon nanotube networks on transparent flexible substrate. Phys. Status Sol. B, 251(12):2461-2465. ![]() [12]Ismail, Y., Friedman, E.G., Neves, J.L., 2000. Equivalent Elmore delay for RLC trees. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 19(1):83-97. ![]() [13]Jespersen, T.S., Nygaard, J., 2005. Charge trapping in carbon nanotube loops demonstrated by electrostatic force microscopy. Nano Lett., 5(9):1838-1841. ![]() [14]Journet, C., Maser, W.K., Bernier, P., et al., 1997. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388(6644):756-758. ![]() [15]Kane, C., Balents, L., Fisher, M.P., 1997. Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett., 79(25):5086-5089. ![]() [16]Kreupl, F., 2008. Carbon nanotubes in microelectronic applications. In: Hierold, C., Brand, O., Fedder, G.K. (Eds.), Carbon Nanotube Devices: Properties, Modelling, Integration and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, p.1-42. ![]() [17]Liang, F., Wang, G., Ding, W., 2011. Estimation of time delay and repeater insertion in multiwall carbon nano-tube interconnects. IEEE Trans. Electron. Dev., 58(8):2712-2720. ![]() [18]Liu, C., Cheng, H.M., 2013. Carbon nanotubes: controlled growth and application. Mater. Today, 16(1-2):19-28. ![]() [19]McEuen, P.L., Fuhrer, M.S., Park, H., 2002. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol., 99(1):78-85. ![]() [20]Nieuwoudt, A., Massoud, Y., 2006. Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques. IEEE Trans. Nanotechnol., 5(6):758-765. ![]() [21]Nihei, M., Horibe, M., Kawabata, A., et al., 2004. Carbon nanotube vias for future LSI interconnects. Proc. IEEE Int. Interconnect Technology Conf., p.251-253. ![]() [22]Ounaies, Z., Park, C., Wise, K.E., et al., 2003. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol., 63(11):1637-1646. ![]() [23]Srivastava, N., Banarjee, K., 2005. Performance analysis of carbon nanotube interconnects for VLSI applications. IEEE/ACM Int. Conf. Computer-Aided Design, p.383-390. ![]() [24]Srivastava, N., Li, H., Kreupl, F., et al., 2009. On the applicability of single-walled carbon nanotubes as VLSI interconnects. IEEE Trans. Nanotechnol., 8(4):542-559. ![]() [25]Thess, A., Lee, R., Nikolaev, P., et al., 1996. Crystalline ropes of metallic carbon nanotubes. Science, 273(5274):483-487. ![]() [26]Yuzvinsky, T.D., Mickelson, W., Aloni, S., et al., 2006. Shrinking a carbon nanotube. Nano Lett., 6(12):2718-2722. ![]() [27]Zhao, Y.P., Wei, B.Q., Ajayan, P.M., et al., 2001. Frequency-dependent electrical transport in carbon nanotubes. Phys. Rev. B, 64(20):201402. ![]() [28]Zhou, Y., Sreekala, S., Ajayan, P.M., et al., 2008. Resistance of copper nanowires and comparison with carbon nano-tube bundles for interconnect applications using first principles calculations. J. Phys.-Condens. Matter, 20(9):1-5. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>