CLC number: TP391.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-04-28
Cited: 0
Clicked: 6680
Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng. Global influenza surveillance with Laplacian multidimensional scaling[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500356 @article{title="Global influenza surveillance with Laplacian multidimensional scaling", %0 Journal Article TY - JOUR
Abstract: This manuscript proposes a spatial transmission model based on Laplacian Multidimensional Scaling to estimate the epidemic risk in countries (or regions) with limited surveillance data. The estimate of epidemic risk in an unmonitored country (or region) is obtained by incorporating the surveillance data reported in countries (or regions) in the same zone divided by the WHO. This method is useful not only for influenza, in which data are lacking in certain countries (or regions), it could also be applied to other infectious diseases. The paper is well written.
基于多维尺度拉普拉斯分析方法的全球流感疫情监测创新点:利用相同传染区传染病的传播具有相似性的特点,实现了对数据缺失的国家地区流感疫情数据的补足和预测,以及全世界范围的流感疫情监测。 方法:收集全世界范围内WHO历年来的监测数据,包括8种不同类型流感的每周感染人数。根据全世界范围内不同地区传染模式的多样性和相同地区传染模式的相似性建立模型。建立了传播相似性矩阵。根据同一传播区国家的相似性便可以得到数据缺失国家地区的流感疫情状态。 结论:针对不同流感传播区的国家地区建立了一个空间相关的流感疫情监测系统。该系统可以有效监测一些无WHO数据的非洲国家地区的疫情风险。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Best, N., Richardson, S., Thomson, A., 2005. A comparison of Bayesian spatial models for disease mapping. Stat. Methods Med. Res., 14(1):35-59. ![]() [2]Briand, S., Mounts, A., Chamberland, M., 2014. Challenges of Global Surveillance during an Influenza Pandemic. World Health Organization, Geneva. Available from http://www.who.int/influenza/surveillance_monitoring/Challenges_global_surveillance.pdf [Accessed on June 10, 2014]. ![]() [3]Cooper, B.S., Pitman, R.J., Edmunds, W.J., et al., 2006. Delaying the international spread of pandemic influenza. PLoS Med., 3(6):e212. ![]() [4]ECDC, 2009. Pandemic (H1N1) 2009. European Centers for Disease Control, Stockholm. Available from http://ec.europa.eu/health/communicable_diseases/diseases/influenza/h1n1/index_en.htm [Accessed on June 10, 2014]. ![]() [5]Eubank, S., Guclu, H., Kumar, V., et al., 2004. Modelling disease outbreaks in realistic urban social networks. Nature, 429:180-184. ![]() [6]Ferguson, N., Donnelly, C., Anderson, R., 2001. The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. Science, 292(5519):1155-1160. ![]() [7]Ferguson, N., Cummings, D., Cauchemez, S., et al., 2005. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature, 437:209-214. ![]() [8]Hay, S.I., Battle, K.E., Pigott, D.M., et al., 2013. Global mapping of infectious disease. Phil. Trans. R. Soc. B, 368(1614):20120250. ![]() [9]He, D., Dushoff, J., Eftimie, R., et al., 2013. Patterns of spread of influenza A in Canada. Proc. R. Soc. B, 280(1770):20131174. ![]() [10]He, D., Chiu, A., Lin, Q., et al., 2015a. Differences in the seasonality of Middle East respiratory syndrome coronavirus and influenza in the Middle East. Int. J. Infect. Dis., 40:15-16. ![]() [11]He, D., Lui, R., Wang, L., et al., 2015b. Global spatio-temporal patterns of influenza in the post-pandemic era. Sci. Reports, 5:11013. ![]() [12]Hollingsworth, T., Ferguson, N., Anderson, R., 2007. Frequent travelers and rate of spread of epidemics. Emerg. Infect. Dis., 13(9):1288-1294. ![]() [13]Keeling, M., Woolhouse, M., Shaw, D., et al., 2001. Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science, 294(5543):813-817. ![]() [14]Kenah, E., Chao, D., Matrajt, L., et al., 2011. The global transmission and control of influenza. PLoS ONE, 6(5):e19515. ![]() [15]Lavanchy, D., 1999. The importance of global surveillance of influenza. Vaccine, 17:S24-S25. ![]() [16]Longini, I., Nizam, A., Xu, S., et al., 2005. Containing pandemic influenza at the source. Science, 309(5737):1083-1087. ![]() [17]Nelson, M.I., Viboud, C., Vincent, A.L., et al., 2015. Global migration of influenza A viruses in swine. Nat. Commun., 6:6696. ![]() [18]Oshitani, H., Kamigaki, T., Suzuki, A., 2008. Major issues and challenges of influenza pandemic preparedness in developing countries. Emerg. Infect. Dis., 14(6):875-880. ![]() [19]Riley, S., 2007. Large-scale spatial-transmission models of infectious disease. Science, 316(5829):1298-1301. ![]() [20]Tamerius, J., Shaman, J., Alonso, W.J., et al., 2013. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoS Path., 9(3):e1003194. ![]() [21]Wang, L., Li, X., 2014. Spatial epidemiology of networked metapopulation: an overview. Chin. Sci. Bull., 59(28):3511-3522. ![]() [22]WHO, 2014. Introduction of the Influenza Transmission Zones. World Health Organization, Geneva. Available from http://www.who.int/csr/disease/swineflu/transmission_zones/en/ [Accessed on June 10, 2014]. ![]() [23]WHO Regional Office for Africa, 2009. Pandemic (H1N1) 2009 in the African Region: Update 63. World Health Organization, Brazzaville. Available from http://www.afro.who.int/index.php?option=com_docman&task=doc_download&gid=3954 [Accessed on June 10, 2014]. ![]() [24]Williams, C., 2002. On a connection between kernel PCA and metric multidimensional scaling. Mach. Learn., 46(1):11-19. ![]() [25]Zhou, X., Shen, H., 2010. Notifiable infectious disease surveillance with data collected by search engine. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(4):241-248. ![]() [26]Zhou, X., Ye, J., Feng, Y., 2011. Tuberculosis surveillance by analyzing Google trends. IEEE Trans. Biomed. Eng., 58(8):2247-2254. ![]() [27]Zhou, X., Li, Q., Zhu, Z., et al., 2013. Monitoring epidemic alert levels by analyzing Internet search volume. IEEE Trans. Biomed. Eng., 60(2):446-452. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>