CLC number: TP393; U491.13
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-12-23
Cited: 0
Clicked: 8307
Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, Hong-hui Dong. Real-time road traffic state prediction based on ARIMA and Kalman filter[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500381 @article{title="Real-time road traffic state prediction based on ARIMA and Kalman filter", %0 Journal Article TY - JOUR
Abstract: This article describes how the author have implemented an ARIMA state space representation and used Kalman filtering for traffic condition predictions. This is an interesting idea.
基于ARIMA和Kalman滤波的道路交通状态实时预测关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Brockwell, P.J., Davis, R.A., 2006. ARMA models. In: Casella, G., Fienberg, S., Olkin, I. (Eds.), Introduction to Time Series and Forecasting. Springer Science & Business Media, Berlin, Germany, p.83-100. ![]() [2]Chang, T.H., Chueh, C.H., Yang, L.K., 2011. Dynamic traffic prediction for insufficient data roadways via automatic control theories. Contr. Eng. Pract., 19(12):1479-1489. ![]() [3]Chen, B.K., Xie, Y.B., Tong, W., et al., 2012. A comprehensive study of advanced information feedbacks in real-time intelligent traffic systems. Phys. A, 91(8):2730-2739. ![]() [4]Chen, C.Y., Hu, J.M., Meng, Q., et al., 2011. Short-time traffic flow prediction with ARIMA-GARCH model. IEEE Intelligent Vehicles Symp., p.607-612. ![]() [5]Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. J. Bus. Econ. Stat., 13(3):134-144. ![]() [6]Dong, C.F., Ma, X., Wang, G.W., et al., 2009. Prediction feedback in intelligent traffic systems. Phys., 388(21):4651-4657. ![]() [7]Dong, C.F., Ma, X., Wang, B.H., 2010. Weighted congestion coefficient feedback in intelligent transportation systems. Phys. Lett. A, 374(11):1326-1331. ![]() [8]Durbin, J., Koopman, S.J., 2012. Time Series Analysis by State Space Methods. Oxford University Press, London, UK. ![]() [9]Guo, J.H., Huang, W., Williams, B.M., 2014. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transp. Res. Part C, 43:50-64. ![]() [10]Hoong, P.K., Tan, I.K.T., Chien, O.K., et al., 2012. Road traffic prediction using Bayesian networks. IET Int. Conf. on Wireless Communications and Applications, p.1-5. ![]() [11]Kirchgässner, G., Wolters, J., Hassler, U., 2012. Introduction to Modern Time Series Analysis. Springer Science & Business Media, Berlin, Germany. ![]() [12]Kumar, K., Parida, M., Katiyar, V.K., 2013. Short term traffic flow prediction for a non urban highway using artificial neural network. Proc.-Soc. Behav. Sci., 104:755-764. ![]() [13]Lin, L., Li, Y., Sadek, A., 2013. A k nearest neighbor based local linear wavelet neural network model for online short-term traffic volume prediction. Proc.-Soc. Behav. Sci., 96:2066-2077. ![]() [14]Liu, H., Tian, H.Q., Li, Y.F., 2012. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy, 98:415-424. ![]() [15]Liu, J.Y., Wang, W.D., Gong, X.Y., et al., 2012. A hybrid model based on Kalman filter and neutral network for traffic prediction. IEEE 2nd Int. Conf. on Cloud Computing and Intelligent Systems, p.533-536. ![]() [16]Liu, X.L., Jia, P., Wu, S.H., et al., 2011. Short-term traffic flow forecasting based on multi-dimensional parameters. J. Transp. Syst. Eng. Inform. Technol., 11(4):140-146 (in Chinese). ![]() [17]Lv, L., Chen, M., Liu, Y., et al., 2015. A plane moving average algorithm for short-term traffic flow prediction. In: Cau, T., Lim, E.P., Zhou, Z.H., et al. (Eds.), Advances in Knowledge Discovery and Data Mining. Springer Int. Publishing, Cham, Switzerland, p.357-369. ![]() [18]Ma, T., Zhou, Z., Abdulhai, B., 2015. Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction. Transp. Res. Part B, 76:27-47. ![]() [19]Ma, X.L., Tao, Z.M., Wang, Y.H., et al., 2015. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C, 54:187-197. ![]() [20]Min, W., Wynter, L., 2011. Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C, 19 (4):606-616. ![]() [21]Moretti, F., Pizzuti, S., Panzieri, S., et al., 2015. Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling. Neurocomputing, 167:3-7. ![]() [22]Ojeda, L.L., Kibangou, A.Y., de Wit, C.C., 2013. Adaptive Kalman filtering for multi-step ahead traffic flow prediction. IEEE American Control Conf., p.4724-4729. ![]() [23]Pan, T.L., Sumalee, A., Zhong, R.X., et al., 2013. Short-term traffic state prediction based on temporal–spatial correlation. IEEE Trans. Intell. Transp. Syst., 14(3):1242-1254. ![]() [24]Park, J., Li, D., Murphey, Y.L., et al., 2011. Real time vehicle speed prediction using a neural network traffic model. IEEE Int. Joint Conf. on. Neural Networks, p.2991-2996. ![]() [25]Qi, Y., Ishak, S., 2014. A hidden Markov model for short term prediction of traffic conditions on freeways. Transp. Res. Part C, 43:95-111. ![]() [26]Smith, B.L., Williams, B.M., Oswald, R.K., 2002. Comparison of parametric and nonparametric models for traffic flow forecasting. Transp. Res. Part C, 10(4):303-321. ![]() [27]Sommer, M., Tomforde, S., Haehner, J., 2015. A systematic study on forecasting of traffic flows with artificial neural networks. Proc. 28th Int. Conf. on. Architecture of Computing Systems, p.1-8. ![]() [28]Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C., 2005. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. Part C, 13(3):211-234. ![]() [29]Wang, J., Shi, Q.X., 2013. Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory. Transp. Res. Part C, 27:219-232. ![]() [30]Zhang, L., Ma, J., Sun, J., 2012. Examples of validating an adaptive Kalman filter model for short-term traffic flow prediction. 12th Int. Conf. of Transportation Professionals, p.912-922. ![]() [31]Zhang, L., Liu, Q.C., Yang, W.C., et al., 2013. An improved k-nearest neighbor model for short-term traffic flow prediction. Proc.-Soc. Behav. Sci., 96:653-662. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>