CLC number: TP18
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-08-08
Cited: 4
Clicked: 7396
Jian-hua Dai, Hu Hu, Guo-jie Zheng, Qing-hua Hu, Hui-feng Han, Hong Shi. Attribute reduction in interval-valued information systems based on information entropies[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500447 @article{title="Attribute reduction in interval-valued information systems based on information entropies", %0 Journal Article TY - JOUR
Abstract: The authors present an attribute reduction model for interval-valued attributes. The paper deals with an interesting topic and the proposed approach is interesting. The paper is well written and its structure is good.
区间值信息系统中基于信息熵的属性约简关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Billard, L., Douzal-Chouakria, A., Diday, E., 2008. Symbolic Principal Component for Interval-Valued Observations. Available from https://hal.archives-ouvertes.fr/hal-00361053. ![]() [2]Bustince, H., Barrenechea, E., Pagola, M., 2006. Restricted equivalence functions. Fuzzy Sets Syst., 157(17):2333-2346. ![]() [3]Dai, J.H., 2008. Rough 3-valued algebras. Inform. Sci., 178(8):1986-1996. ![]() [4]Dai, J.H., Tian, H.W., 2013. Fuzzy rough set model for set-valued data. Fuzzy Sets Syst., 229:54-68. ![]() [5]Dai, J.H., Xu, Q., 2012. Approximations and uncertainty measures in incomplete information systems. Inform. Sci., 198:62-80. ![]() [6]Dai, J.H., Xu, Q., 2013. Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification. Appl. Soft Comput., 13(1):211-221. ![]() [7]Dai, J.H., Wang, W.T., Xu, Q., et al., 2012. Uncertainty measurement for interval-valued decision systems based on extended conditional entropy. Knowl.-Based Syst., 27:443-450. ![]() [8]Dai, J.H., Tian, H.W., Wang, W.T., et al., 2013a. Decision rule mining using classification consistency rate. Knowl.-Based Syst., 43:95-102. ![]() [9]Dai, J.H., Wang, W.T., Mi, J.S., 2013b. Uncertainty measurement for interval-valued information systems. Inform. Sci., 251:63-78. ![]() [10]Dai, J.H., Wang, W.T., Xu, Q., 2013c. An uncertainty measure for incomplete decision tables and its applications. IEEE Trans. Cybern., 43(4):1277-1289. ![]() [11]Galar, M., Fernandez, J., Beliakov, G., et al., 2011. Interval-valued fuzzy sets applied to stereo matching of color images. IEEE Trans. Image Process., 20(7):1949-1961. ![]() [12]Hedjazi, L., Aguilar-Martin, J., Le Lann, M.V., 2011. Similarity-margin based feature selection for symbolic interval data. Patt. Recogn. Lett., 32(4):578-585. ![]() [13]Hu, Y.C., 2015. Flow-based tolerance rough sets for pattern classification. Appl. Soft Comput., 27:322-331. ![]() [14]Kryszkiewicz, M., 1998. Rough set approach to incomplete information systems. Inform. Sci., 112(1-4):39-49. ![]() [15]Leung, Y., Fischer, M.M., Wu, W.Z., et al., 2008. A rough set approach for the discovery of classification rules in interval-valued information systems. Int. J. Approx. Reason., 47(2):233-246. ![]() [16]Lin, S.H., Huang, C.C., Che, Z.X., 2015. Rule induction for hierarchical attributes using a rough set for the selection of a green fleet. Appl. Soft Comput., 37:456-466. ![]() [17]Pawlak, Z., 1991. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht & Boston. ![]() [18]Qian, Y.H., Liang, J.Y., Dang, C.Y., 2008. Interval ordered information systems. Comput. Math. Appl., 56(8):1994-2009. ![]() [19]Yang, X.B., Yu, D.J., Yang, J.Y., et al., 2009. Dominance-based rough set approach to incomplete interval-valued information system. Data Knowl. Eng., 68(11):1331-1347. ![]() [20]Zhang, C.Y., Fu, H.Y., 2006. Similarity measures on three kinds of fuzzy sets. Patt. Recogn. Lett., 27(12):1307-1317. ![]() [21]Zhang, X.H., Dai, J.H., Yu, Y.C., 2015. On the union and intersection operations of rough sets based on various approximation spaces. Inform. Sci., 292:214-229. ![]() [22]Zhang, X.H., Miao, D.Q., Liu, C.H., et al., 2016. Constructive methods of rough approximation operators and multigranulation rough sets. Knowl.-Based Syst., 91:114-125. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>