CLC number: TP399; U495
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-11-08
Cited: 0
Clicked: 9240
Citations: Bibtex RefMan EndNote GB/T7714
Aftab Ahmed Chandio, Nikos Tziritas, Fan Zhang, Ling Yin, Cheng-Zhong Xu. Towards adaptable and tunable cloud-based map-matching strategy for GPS trajectories[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1600027 @article{title="Towards adaptable and tunable cloud-based map-matching strategy for GPS trajectories", %0 Journal Article TY - JOUR
Abstract: The paper discussed a work of map matching process with contribution of the cloud computing and other strategies to improve the accuracy and efficiency. Indeed this is an important technical issue in practical application of map matching, especially the real time spatial data processing. This is a useful alternative to map matching problem. The paper is well written with useful illustration.
基于云计算的自适应可调节GPS轨迹地图匹配策略关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Brakatsoulas, S., Pfoser, D., Salas, R., et al., 2005. On map-matching vehicle tracking data. Proc. 31st Int. Conf. on Very Large Data Bases, p.853-864. ![]() [2]Chandio, A.A., Zhang, F., Memon, T.D., 2014. Study on LBS for characterization and analysis of big data benchmarks. Mehran Univ. Res. J. Eng. Technol., 33(4):432-440. ![]() [3]Chandio, A.A., Tziritas, N., Xu, C.Z., 2015a. Big-data processing techniques and their challenges in transport domain. ZTE Commun., 13(1):50-59. ![]() [4]Chandio, A.A., Tziritas, N., Zhang, F., et al., 2015b. An approach for map-matching strategy of gps-trajectories based on the locality of road networks. 2nd Int. Conf. on Internet of Vehicles, p.234-246. ![]() [5]Chen, B.Y., Yuan, H., Li, Q., et al., 2014. Map-matching algorithm for large-scale low-frequency floating car data. Int. J. Geograph. Inform. Sci., 28(1):22-38. ![]() [6]Chen, C., Liu, Z., Lin, W.H., et al., 2013. Distributed modeling in a MapReduce framework for data-driven traffic flow forecasting. IEEE Trans. Intell. Transp. Syst., 14(1): 22-33. ![]() [7]Dean, J., Ghemawat, S., 2008. MapReduce: simplified data processing on large clusters. Commun. ACM, 51(1): 107-113. ![]() [8]Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numer. Math., 1(1):269-271. ![]() [9]Fang, S.K., Zimmermann, R., 2011. EnAcq: energy-efficient GPS trajectory data acquisition based on improved map matching. Proc. 19th ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information Systems, p.221- 230. ![]() [10]Goh, C.Y., Dauwels, J., Mitrovic, N., et al., 2012. Online map-matching based on hidden Markov model for real- time traffic sensing applications. 15th Int. IEEE Conf. on Intelligent Transportation Systems, p.776-781. ![]() [11]Gonzalez, H., Han, J., Li, X., et al., 2007. Adaptive fastest path computation on a road network: a traffic mining approach. 33rd Int. Conf. on Very Large Data Bases, p.794-805. ![]() [12]Greenfeld, J.S., 2002. Matching GPS observations to locations on a digital map. Proc. 81st Annual Meeting of the Transportation Research Board, p.1-13. ![]() [13]He, Z.C., She, X.W., Zhuang, L.J., et al., 2013. On-line map-matching framework for floating car data with low sampling rate in urban road networks. IET Intell. Transp. Syst., 7(4):404-414. ![]() [14]Hu, H., Lee, D.L., Lee, V., 2006. Distance indexing on road networks. Proc. 32nd Int. Conf. on Very Large Data Bases, p.894-905. ![]() [15]Hummel, B., Tischler, K., 2005. Robust, GPS-only map matching: exploiting vehicle position history, driving restriction information and road network topology in a statistical framework. GIS Research UK Conf., p.68-77. ![]() [16]Kajdanowicz, T., Kazienko, P., Indyk, W., 2014. Parallel processing of large graphs. Fut. Gener. Comput. Syst., 32: 324-337. ![]() [17]Kolahdouzan, M., Shahabi, C., 2004. Voronoi-based K nearest neighbor search for spatial network databases. Proc. 30th Int. Conf. on Very Large Data Bases, p.840-851. ![]() [18]Kühne, R., Schäfer, R., Mikat, J., et al., 2003. New approaches for traffic management in metropolitan areas. Proc. IFAC CTS Symp. ![]() [19]Li, Q., Zhang, T., Yu, Y., 2011a. Using cloud computing to process intensive floating car data for urban traffic surveillance. Int. J. Geograph. Inform. Sci., 25(8):1303- 1322. ![]() [20]Li, X., Han, J., Lee, J.G., et al., 2007. Traffic density-based discovery of hot routes in road networks. Int. Symp. on Spatial and Temporal Databases, p.441-459. ![]() [21]Li, Z.J., Chen, C., Wang, K., 2011b. Cloud computing for agent-based urban transportation systems. IEEE Intell. Syst., 26(1):73-79. ![]() [22]Liu, K., Li, Y., He, F., et al., 2012. Effective map-matching on the most simplified road network. Proc. 20th Int. Conf. on Advances in Geographic Information Systems, p.609-612. ![]() [23]Lou, Y., Zhang, C., Zheng, Y., et al., 2009. Map-matching for low-sampling-rate GPS trajectories. Proc. 17th ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information Systems, p.352-361. ![]() [24]Malewicz, G., Austern, M.H., Bik, A.J., et al., 2010. Pregel: a system for large-scale graph processing. Proc. ACM SIGMOD Int. Conf. on Management of Data, p.135-146. ![]() [25]Newson, P., Krumm, J., 2009. Hidden Markov map matching through noise and sparseness. Proc. 17th ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information Systems, p.336-343. ![]() [26]Pink, O., Hummel, B., 2008. A statistical approach to map matching using road network geometry, topology and vehicular motion constraints. Proc. 11th Int. IEEE Conf. on Intelligent Transprotation Systems, p.862-867. ![]() [27]Quddus, M.A., Ochieng, W.Y., Noland, R.B., 2007. Current map-matching algorithms for transport applications: state-of-the art and future research directions. Transp. Res. Part C, 15(5):312-328. ![]() [28]Seo, S., Yoon, E.J., Kim, J., et al., 2010. HAMA: an efficient matrix computation with the MapReduce framework. IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, p.721-726. ![]() [29]Tang, W., Ren, D., Lan, Z., et al., 2013. Toward balanced and sustainable job scheduling for production supercomputers. Parall. Comput., 39(12):753-768. ![]() [30]Thomsen, J.R., Yiu, M.L., Jensen, C.S., 2012. Effective caching of shortest paths for location-based services. Proc. ACM SIGMOD Int. Conf. on Management of Data, p.313-324. ![]() [31]Tiwari, S., Kaushik, S., 2013. Scalable method for k optimal meeting points (k-omp) computation in the road network databases. Int. Workshop on Databases in Networked Information Systems, p.277-292. ![]() [32]Wang, J.Z., Wang, Z.J., 2013. Architecture design of urban intelligent transportation using cloud computing. Adv. Mater. Res., 605-607:2549-2552. ![]() [33]Wang, S., 2010. A cyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis. Ann. Assoc. Am. Geograph., 100(3):535-557. ![]() [34]Wang, S., Liu, Y., 2009. TeraGrid GIScience gateway: bridging cyberinfrastructure and GIScience. Int. J. Geograph. Inform. Sci., 23(5):631-656. ![]() [35]Wang, Z.Y., Du, Y., Wang, G., et al., 2008. A quick map- matching algorithm by using grid-based selecting. Int. Workshop on Education Technology and Training and Geoscience and Remote Sensing, p.306-311. ![]() [36]Wenk, C., Salas, R., Pfoser, D., 2006. Addressing the need for map-matching speed: localizing global curve-matching algorithms. 18th Int. Conf. on Scientific and Statistical Database Management, p.379-388. ![]() [37]Yin, G.G., Xu, C.Z., Wang, L.Y., 2003. Optimal remapping in dynamic bulk synchronous computations via a stochastic control approach. IEEE Trans. Parall. Distr. Syst., 14(1): 51-62. ![]() [38]Yuan, J., Zheng, Y., Zhang, C., et al., 2010. An interactive- voting based map matching algorithm. 11th Int. Conf. on Mobile Data Management, p.43-52. ![]() [39]Zheng, Y., Wang, L., Zhang, R., et al., 2008. GeoLife: managing and understanding your past life over maps. 9th Int. Conf. on Mobile Data Management, p.211-212. ![]() [40]Zheng, Y., Capra, L., Wolfson, O., et al., 2014. Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol., 5(3):38. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>