CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-09-22
Cited: 0
Clicked: 8388
Hou-kui Zhou, Hui-min Yu, Roland Hu. Topic discovery and evolution in scientific literature based on content and citations[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1601125 @article{title="Topic discovery and evolution in scientific literature based on content and citations", %0 Journal Article TY - JOUR
基于内容和引用的科研文献的主题发现和演化关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ahmed, A., Xing, E.P., 2010. Timeline: a dynamic hierarchical Dirichlet process model for recovering birth/death and evolution of topics in text stream. Proc. 26th Conf. on Uncertainty in Artificial Intelligence, p.20-29. ![]() [2]Blei, D.M., Lafferty, J.D., 2006. Dynamic topic models. Proc. 23rd ACM Int. Conf. on Machine Learning, p.113-120. ![]() [3]Blei, D.M., Ng, A.Y., Jordan, M.I., 2003. Latent Dirichlet allocation. J. Mach. Learn. Res., 3:993-1022. ![]() [4]Brin, B.S., Page, L., 1998. The anatomy of a large scale hypertextual web search engine. Comput. Netw. ISDN Syst., 30(98):107-117. ![]() [5]Chang, J., Blei, D.M., 2009. Relational topic models for document networks. Proc. 12th Int. Conf. on Artificial Intelligence and Statistics, p.81-88. ![]() [6]Cohn, D., Chang, H., 2000. Learning to probabilistically identify authoritative documents. Proc. 17th Int. Conf. on Machine Learning, p.167-174. ![]() [7]Dietz, L., Bickel, S., Scheffer, T., 2007. Unsupervised prediction of citation influences. Proc. 24th ACM Int. Conf. on Machine Learning, p.233-240. ![]() [8]Erosheva, E., Fienberg, S., Lafferty, J., 2004. Mixed-membership models of scientific publications. PNAS, 101(Suppl 1):5220-5227. ![]() [9]Griffiths, T.L., Steyvers, M., 2004. Finding scientific topics. PNAS, 101(Suppl 1):5228-5235. ![]() [10]Guo, Z., Zhang, Z., Zhu, S., et al., 2014. A two-level topic model towards knowledge discovery from citation networks. IEEE Trans. Knowl. Data Eng., 26(4):780-794. ![]() [11]He, Q., Chen, B., Pei, J., et al., 2009. Detecting topic evolution in scientific literature: how can citations help Proc. 18th ACM Conf. on Information and Knowledge Management, p.957-966. ![]() [12]Hofmann, T., 2001. Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn., 42(1-2):177-196. ![]() [13]Lin, F.R., Huang, F.M., Liang, C.H., 2007. Individualized storyline-based news topic retrospection. Pacific Asia Conf. on Information Systems, Article 140. ![]() [14]Lu, Z., Mamoulis, N., Cheung, D.W., 2014. A collective topic model for milestone paper discovery. Proc. 37th Int. ACM SIGIR Conf. on Research & Development in Information Retrieval, p.1019-1022. ![]() [15]Macroberts, M.H., Macroberts, B.R., 1989. Problems of citation analysis: a critical review. J. Am. Soc. Inform. Sci., 40(5):342-349. ![]() [16]Mei, Q., Zhai, C., 2005. Discovering evolutionary theme patterns from text: an exploration of temporal text mining. Proc. 11th ACM SIGKDD Int. Conf. on Knowledge Discovery in Data Mining, p.198-207. ![]() [17]Mei, Q., Cai, D., Zhang, D., et al., 2008. Topic modeling with network regularization. Proc. 17th Int. Conf. on World Wide Web, p.101-110. ![]() [18]Nallapati, R., Cohen, W.W., 2008. Link-PLSA-LDA: a new unsupervised model for topics and influence of blogs. Proc. 2nd Int. Conf. on Weblogs and Social Media, p.84-92. ![]() [19]Nallapati, R.M., Ahmed, A., Xing, E.P., et al., 2008. Joint latent topic models for text and citations. Proc. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.542-550. ![]() [20]Wang, X.L., Zhai, C.X., Roth, D., 2013. Understanding evolution of research themes: a probabilistic generative model for citations. Proc. 19th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.1115-1123. ![]() [21]Wang, X.R., McCallum, A., 2006. Topics over time: a non-Markov continuous-time model of topical trends. Proc. 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.424-433. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>